精英家教网 > 高中数学 > 题目详情

【题目】已知函数,曲线在点处的切线方程为.

(1)求函数的解析式,并证明:.

(2)已知,且函数与函数的图象交于两点,且线段的中点为,证明:.

【答案】(1),证明见解析; (2)证明见解析.

【解析】

1)利用切线方程可求得的解析式,令,利用导数可求得,从而证得结论;(2)通过分析法可知要证成立只需证;令,即证:;令,利用导数研究单调性,可知,得到成立;令,利用导数研究单调性,可知,得到成立,可知需证的不等式成立,则原不等式成立.

(1)由题意得:,即

,即,则,解得:

.

,解得:

则函数上单调递减,在上单调递增

,则:

(2)要证成立,只需证:

即证,即:

只需证:

,即证:

要证,只需证:

,则

上为增函数

,即成立;

要证,只需证明:

,则

上为减函数 ,即成立

成立

成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,椭圆 的左右焦点分别为的,离心率为;过抛物线焦点的直线交抛物线于两点,当时, 点在轴上的射影为。连结并延长分别交两点,连接 的面积分别记为 ,设.

)求椭圆和抛物线的方程;

)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 k为常数)

1)当时,求函数的最值;

2)若,讨论函数的单调性

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两条抛物线Cy22xEy22pxp0p1),MC上一点(异于原点O),直线OME的另一个交点为N.若过M的直线lE相交于AB两点,且△ABN的面积是△ABO面积的3倍,则p_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数.

1)讨论函数的单调性;

2)当为自然对数的底数),时,若方程有两个不等实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在无穷数列中,,记项中的最大项为,最小项为,令.

1)若的前项和满足.

①求

②是否存在正整数满足?若存在,请求出这样的,若不存在,请说明理由.

2)若数列是等比数列,求证:数列是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性.

2,都有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(k+)lnx+,k∈[4,+∞),曲线y=f(x)上总存在两点M(x1,y1),N(x2,y2),使曲线y=f(x)在M,N两点处的切线互相平行,则x1+x2的取值范围为

A. ,+∞) B. ,+∞) C. [,+∞) D. [,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定椭圆,称圆心在原点,半径为的圆是椭圆准圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.

1)求椭圆的方程和其准圆方程;

2)点是椭圆准圆上的动点,过点作椭圆的切线准圆于点.

当点准圆轴正半轴的交点时,求直线的方程并证明

求证:线段的长为定值.

查看答案和解析>>

同步练习册答案