| A. | 4 | B. | -2 | C. | 2 | D. | log27 |
分析 根据条件将x换为x+$\frac{3}{2}$,确定函数的周期为3,利用函数周期性进行转化,可得f(2015)=f(2),由已知解析式,运用对数的运算性质,计算即可得到所求值.
解答 解:由f(x+$\frac{3}{2}$)=-f(x),
得f(x+3)=-f(x+$\frac{3}{2}$)=f(x),
即函数f(x)的周期为3.
则f(2015)=f(671×3+2)=f(2),
∵x∈(0,3)时,f(x)=log2(3x+1),
∴f(2015)=f(2)=log2(3×2+1)=log27,
故选:D.
点评 本题主要考查函数值的计算,同时考查对数的运算性质,根据函数的周期性是解决本题的关键,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | A⊆B | B. | B⊆A | C. | A?B | D. | B?A |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{25}{6}$ | B. | $\frac{21}{5}$ | C. | $\frac{8}{3}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com