【题目】如图,在
中,
,
,
是
边上的高,沿
把
折起,使
。
![]()
![]()
(Ⅰ)证明:平面
平面
;
(Ⅱ)
为
的中点,求
与底面
所成角的正切值。
【答案】(1)见解析;(2)
.
【解析】此题主要考查面面垂直和异面直线夹角公式的求法,第二问解题的关键是作出辅助线,此题是一道中档题,也是高考必考题;(1)已知在△ABC中,AD是BC上的高,沿AD把△ABC折起,使∠BDC=60°,可得AD⊥DC,AD⊥DB,根据面面垂直的判定定理进行求解;
(2)作辅助线,取DC中点F,连接EF,则EF∥BD,可得∠AEF为异面直线AE与BD所成的角,再根据余弦定理和向量公式进行求解;
解(Ⅰ)∵折起前AD是BC边上的高,
∴ 当Δ ABD折起后,AD⊥DC,AD⊥DB,又DB
DC=D,
∴AD⊥平面BDC,∵AD 平面
平面BDC.
平面ABD
平面BDC。----4分
(Ⅱ)由∠ BDC=
及(Ⅰ)知DA,DB,DC两两垂直,不防设
=1,以D为坐标原点,以
所在直线
轴建立如图所示的空间直角坐标系,
![]()
易得D(0,0,0),B(1,0,0),C(0,3,0),A(0,0,
),E(
,
,0),
=
,
=(1,0,0,),
与
夹角的余弦值为
<
,
>=![]()
.--------12分
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,二次函数
的图象与
轴交于
,
两点,点
的坐标为
.当
变化时,解答下列问题:
(1)以
为直径的圆能否经过点
?说明理由;
(2)过
,
,
三点的圆在
轴上截得的弦长是否为定值?若是,则求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市地产数据研究所的数据显示,2016年该市新建住宅销售均价走势如下图所示,3月至7月房价上涨过快,政府从8月采取宏观调控措施,10月份开始房价得到很好的抑制.
![]()
(1)地产数据研究所发现,3月至7月的各月均价
(万元/平方米)与月份
之间具有较强的线性相关关系,试求
关于
的回归方程;
(2)政府若不调控,依次相关关系预测第12月份该市新建住宅的销售均价.
参考数据:
,
,
;
回归方程
中斜率和截距的最小二乘法估计公示分别为:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在(﹣∞,0)∪(0,+∞)上的奇函数f(x)满足f(2)=0,且在(﹣∞,0)上是增函数;又定义行列式
=a1a4﹣a2a3; 函数g(θ)=
(其中0≤θ≤
).
(1)证明:函数f(x)在(0,+∞)上也是增函数;
(2)若函数g(θ)的最大值为4,求m的值;
(3)若记集合M={m|任意的0≤θ≤
, g(θ)>0},N={m|任意的0≤θ≤
, f[g(θ)]<0},求M∩N.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,点P到两点(0,﹣
),(0,
)的距离之和等于4,设点P的轨迹为C,直线y=kx+1与C交于A,B两点.
(1)写出C的方程;
(2)若
⊥
, 求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A={x|
<3x<9},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定义A﹣B={x|x∈A且xB},求A﹣B和B﹣A.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为Tn,且
,令cn=b2n(n∈N*),求数列{cn}的前n项和Rn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com