精英家教网 > 高中数学 > 题目详情

【题目】已知定义在(﹣∞,0)∪(0,+∞)上的奇函数f(x)满足f(2)=0,且在(﹣∞,0)上是增函数;又定义行列式=a1a4﹣a2a3; 函数g(θ)=(其中0≤θ≤).
(1)证明:函数f(x)在(0,+∞)上也是增函数;
(2)若函数g(θ)的最大值为4,求m的值;
(3)若记集合M={m|任意的0≤θ≤ , g(θ)>0},N={m|任意的0≤θ≤ , f[g(θ)]<0},求M∩N.

【答案】证明:(1)在(0,+∞)上任取x1 , x2 , 令x1<x2
∵定义在(﹣∞,0)∪(0,+∞)上的奇函数f(x)满足f(2)=0,且在(﹣∞,0)上是增函数,
∴f(x1)﹣f(x2)=﹣f(﹣x1)+f(﹣x2)=f(﹣x2)﹣f(﹣x1)<0,
∴函数f(x)在(0,+∞)上也是增函数.
解:(2)g(θ)=
=sin2θ+mcosθ﹣3m
=1﹣cos2θ+mcosθ﹣3m,
=﹣(cosθ﹣2+
∵函数g(θ)的最大值为4,f(x)在(﹣∞,0)上是增函数,又f(x)是奇函数,
∴f(x)在(0,+∞)也是增函数,
∵θ∈[0,],∴cosθ∈[0,1],
g(θ)的最大值只可能在cosθ=0(),cosθ=1(),cosθ=(0<)处取得,
若cosθ=0,g(θ)=4,则有1﹣3m=4,m=﹣1,此时=-,符合;
若cosθ=1,g(θ)=4,则有﹣2m=4,m=﹣2,此时=-1,不符合;
若cosθ=,g(θ)=4,则有=4,m=6+4或m=6﹣4,此时=3+2或m=3﹣2,不符合;
综上,m=﹣1.
(3)∵f(x)是定义在(﹣∞,0)∪(0,+∞)上的奇函数,且满足f(2)=0,∴f(﹣2)=0,
又f(x)在(﹣∞,0),(0,+∞)上均是增函数,
由f[g(θ)]<0,得g(θ)<﹣2,或2>g(θ)>0,
又M={m|恒有g(θ)>0},N={m|恒有f[g(θ)]<0}={m|恒有g(θ)<﹣2,或2>g(θ)>0},
∴M∩N={m|恒有0<g(θ)<2},即不等式0<﹣cos2θ+mcosθ﹣3m+1<2在θ∈[0,]恒成立,
当m>=
=﹣(3﹣cosθ)﹣()+6=﹣[(3﹣cosθ)+()]+6,
∵θ∈[0,],∴cosθ∈[0,1],3﹣cosθ∈[2,3],
∴7≥(3﹣cosθ)+(,﹣[(3﹣cosθ)+()]+6∈[﹣1,﹣],
此时,m>﹣
=﹣(3﹣cosθ)﹣()+6=﹣[(3﹣cosθ)+()]+6,
∵θ∈[0,],∴cosθ∈[0,1],3﹣cosθ∈[2,3],
∴7≥(3﹣cosθ)+(,﹣[(3﹣cosθ)+()]+6∈[﹣1,﹣],
此时,m>﹣
当m<=
=﹣(3﹣cosθ)﹣()+6
=﹣[(3﹣cosθ)+()]+6,
∴6≥(3﹣cosθ)+(,﹣[(3﹣cosθ)+()]+6∈[0,6﹣4],
此时,m<0;
综上,m∈(﹣,0).
∴M∩N=(﹣,0).
【解析】(1)利用定义法能证明函数f(x)在(0,+∞)上也是增函数.
(2)由已知可判断f(x)在(0,+∞)上的单调性,由定义表示出g(θ),根据二次函数的性质分类讨论可表示出其最大值,令其为4可求m值;
(3)由f[g(θ)]<0,得g(θ)<﹣2,或2>g(θ)>0,则M={m|恒有g(θ)>0},N={m|恒有f[g(θ)]<0}={m|恒有g(θ)<﹣2,或2>g(θ)>0},从而M∩N={m|恒有0<g(θ)<2},转化为不等式0<﹣cos2θ+mcosθ﹣3m+1<2在θ∈[0,]恒成立,分离出参数m后,转化为求函数的最值即可,变形后借助“对勾函数”的性质可求得最值;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂拟造一座平面为长方形,面积为三级污水处理池.由于地形限制,长、宽都不能超过,处理池的高度一定.如果池的四周墙壁的造价为中间两道隔墙的造价为,池底的造价为,则水池的长、宽分別为多少米时,污水池的造价最低?最低造价为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,平面AED平面ABCD,EFAB,AB=2,BC=EF=1,AE=,DE=3,BAD=60,G为BC的中点.

(1)求证:FG平面BED;

(2)求证:平面BED平面AED;

(3)求直线EF与平面BED所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 处取得极值,且,曲线处的切线与直线垂直.

(Ⅰ)求的解析式;

(Ⅱ)证明关于的方程至多只有两个实数根(其中的导函数, 是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4x﹣2x+1+3,当x∈[﹣2,1]时,f(x)的最大值为m,最小值为n,
(1)若角α的终边经过点P(m,n),求sinα+cosα的值;
(2)g(x)=mcos(nx+)+n,求g(x)的最大值及自变量x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中, 边上的高,沿折起,使

(Ⅰ)证明:平面平面

(Ⅱ)的中点,求与底面所成角的正切值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是一个等差数列且a2+a8=﹣4a6=2

1)求{an}的通项公式;

2)求{an}的前n项和Sn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,过上一点的切线的方程为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设过点且斜率不为的直线交椭圆于两点,试问轴上是否存在点,使得?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为A,右焦点为F,过点F的直线交椭圆于BC两点.

(1)求该椭圆的离心率;

(2)设直线ABAC分别与直线x=4交于点MN,问:x轴上是否存在定点P使得MPNP?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案