精英家教网 > 高中数学 > 题目详情
12.求函数y=$\frac{1}{2}$x2-x+1在a≤x≤b上的最大值.

分析 根据区间与对称轴的关系讨论函数的单调性,利用单调性求出最值.

解答 解:二次函数的图象开口向上,对称轴为x=1.
若1≤$\frac{a+b}{2}$,即a+b≥2时,二次函数的最大值为$\frac{1}{2}$b2-b+1.
若1>$\frac{a+b}{2}$,即a+b<2时,二次函数的最大值为$\frac{1}{2}$a2-a+1.

点评 本题考查了二次函数的单调性与最值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右焦点F2的直线y=$\sqrt{3}$(x-c)与双曲线在第一象限交于点A,点F1为左焦点,且($\overrightarrow{{F}_{2}{F}_{1}}$+$\overrightarrow{{F}_{2}A}$)•$\overrightarrow{{F}_{1}A}$=0,则此双曲线的离心率为(  )
A.$\frac{1+\sqrt{3}}{2}$B.$\frac{1+\sqrt{5}}{2}$C.$\frac{3}{2}$D.$\frac{1+\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.参数a分别取何值时,关于x的方程$\frac{lo{g}_{a}x}{lo{g}_{a}2}$+$\frac{lo{g}_{x}(2a-x)}{lo{g}_{x}2}$=$\frac{1}{lo{g}_{({a}^{2}-1)}2}$,
(1)有解;
(2)仅有一解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.根据下列条件,求双曲线方程:
(1)中心在原点,一个顶点是(0,6),且离心率是1.5;
(2)已知双曲线经过点P(10,-3$\sqrt{3}$),且渐近线为y=±$\frac{3}{5}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.平面上$\overrightarrow{a}$,$\overrightarrow{b}$满足|2$\overrightarrow{a}$+$\overrightarrow{b}$|=1,|$\overrightarrow{a}-3\overrightarrow{b}$|=1,则|$\overrightarrow{a}$|的范围是[$\frac{2}{7}$,$\frac{4}{7}$],则|$\overrightarrow{b}$|的范围是[$\frac{1}{7}$,$\frac{3}{7}$],|$\overrightarrow{a}+\overrightarrow{b}$|的取值范围是[$\frac{3}{7}$,$\frac{5}{7}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=$\frac{[sin(\frac{π}{2}-x)tan(π+x)-cos(π-x)]^{2}-1}{4sin(\frac{3π}{2}+x)+cos(π-x)+cos(2π-x)}$.
(1)化简f(x);
(2)若-$\frac{π}{3}$<x<$\frac{π}{3}$且f(x)<$\frac{1}{4}$,求x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等差数列{an}中,“a1<a3”是“数列{an}是单调递增数列”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=x2-4x+3.
(1)求f[f(-1)]的值;
(2)求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.计算下列各式的值:
(1)$\frac{lg12}{1+\frac{1}{2}lg0.36+\frac{1}{3}lg8}$;
(2)($\frac{25}{9}$)0.5+0.1-2+($\sqrt{8}$)${\;}^{{\;}^{\frac{2}{3}}}$.

查看答案和解析>>

同步练习册答案