精英家教网 > 高中数学 > 题目详情
9.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的一条渐近线l的倾斜角为$\frac{π}{3}$,且C的一个焦点到l的距离为$\sqrt{3}$,则C的方程为x2-$\frac{{y}^{2}}{3}$=1.

分析 求出双曲线的一条渐近线方程,可得b=$\sqrt{3}$a,再由点到直线的距离公式,计算可得a,b,进而得到所求双曲线的方程.

解答 解:双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的一条渐近线l的方程为y=$\frac{b}{a}$x,
由题意可得$\frac{b}{a}$=tan$\frac{π}{3}$=$\sqrt{3}$,
即b=$\sqrt{3}$a,
由C的一个焦点到l的距离为$\sqrt{3}$,可得
$\frac{bc}{\sqrt{{a}^{2}+{b}^{2}}}$=b=$\sqrt{3}$,
解得a=1,
则双曲线的方程为x2-$\frac{{y}^{2}}{3}$=1.
故答案为:x2-$\frac{{y}^{2}}{3}$=1.

点评 本题考查双曲线的方程的求法,注意运用双曲线的渐近线方程,考查点到直线的距离公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.与双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线y=$\frac{b}{a}$x的垂直的直线l交双曲线于A,B两点,若向量$\overrightarrow{OA}$+$\overrightarrow{OB}$与$\overrightarrow{m}$=(9,-$\frac{1}{3}$)平行,则双曲线C的离心率等于 (  )
A.$\frac{\sqrt{10}}{3}$B.$\frac{\sqrt{14}}{3}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知F是双曲线C:x2-$\frac{{y}^{2}}{8}$=1的右焦点,若P是C的左支上一点,A(0,6$\sqrt{6}$)是y轴上一点,则△APF周长的最小值为32.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线以锐角△ABC的顶点B,C为焦点,且经过点A,若△ABC内角的对边分别为a、b、c,且a=2,b=3,$\frac{csinA}{a}$=$\frac{\sqrt{3}}{2}$,则此双曲线的离心率为(  )
A.$\frac{3+\sqrt{7}}{2}$B.$\frac{3-\sqrt{7}}{2}$C.3-$\sqrt{7}$D.3+$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.双曲线$\frac{y^2}{9}-\frac{x^2}{b^2}=1$的离心率为2,则双曲线的焦点到渐近线的距离是3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1(a>0)的离心率为$\sqrt{3}$,则该双曲线的渐近线方程为(  )
A.y=±2xB.y=±$\sqrt{2}$xC.y=±$\frac{1}{2}$xD.y=±$\frac{\sqrt{2}}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设等比数列{an}的各项均为正数,且${a_1}=\frac{1}{2},{a_4}^2=4{a_2}•{a_8}$,若$\frac{1}{b_n}={log_2}{a_1}+{log_2}{a_2}+…+{log_2}{a_n}$,则数列{bn}的前10项和为(  )
A.$-\frac{20}{11}$B.$\frac{20}{11}$C.$-\frac{9}{5}$D.$\frac{9}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2+cosα}\\{y=sinα}\end{array}\right.$ (α为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为ρsin($θ+\frac{π}{4}$)=2$\sqrt{2}$.
(I)求曲线C与直线l在该直角坐标系下的普通方程;
(Ⅱ)动点A在曲线C上,动点B在直线l上,定点P(-1,1),求|PB|+|PA|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知直线y=kx($\frac{3}{2}$<k<$\frac{8}{3}$)与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)交于不同的两点P,Q,若点P,Q在x轴上的射影恰好为该双曲线的两个焦点,则该双曲线离心率e的取值范围为(2,3).

查看答案和解析>>

同步练习册答案