精英家教网 > 高中数学 > 题目详情
14.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1(a>0)的离心率为$\sqrt{3}$,则该双曲线的渐近线方程为(  )
A.y=±2xB.y=±$\sqrt{2}$xC.y=±$\frac{1}{2}$xD.y=±$\frac{\sqrt{2}}{2}$x

分析 运用双曲线的离心率公式和a,b,c的关系,可得b=$\sqrt{2}$a,由双曲线的渐近线方程即可得到所求方程.

解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1(a>0)的离心率为$\sqrt{3}$,
可得e=$\frac{c}{a}$=$\sqrt{3}$,
即有c=$\sqrt{3}$a,由c2=a2+b2
可得b=$\sqrt{2}$a,
即有渐近线方程为y=±$\frac{b}{a}$x,
即为y=±$\sqrt{2}$x.
故选:B.

点评 本题考查双曲线的渐近线方程的求法,注意运用离心率公式,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与抛物线x2=y-1只有一个公共点,则双曲线的离心率为(  )
A.5B.$\frac{5}{4}$C.$\sqrt{5}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设F1,F2分别是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,若双曲线右支上存在一点P,使得(${\overrightarrow{OP}$+$\overrightarrow{O{F_2}}}$)•$\overrightarrow{{F_2}P}$=0,其中O为坐标原点,且|${\overrightarrow{P{F_1}}}$|=2|${\overrightarrow{P{F_2}}}$|,则该双曲线的离心率为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{3}$+1C.$\frac{\sqrt{5}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中,x=0是极值点的函数是(  )
A.y=-x3B.y=x2C.y=tanx-xD.y=$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的一条渐近线l的倾斜角为$\frac{π}{3}$,且C的一个焦点到l的距离为$\sqrt{3}$,则C的方程为x2-$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.双曲线${x^2}-\frac{y^2}{3}=1$的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.当φ=$\frac{π}{2}$,$\frac{3π}{2}$时,求出渐开线$\left\{\begin{array}{l}{x=cosφ+φsinφ}\\{y=sinφ-φcosφ}\end{array}\right.$上的对应点A,B,并求出点A,B间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在极坐标系中,曲线C1的极坐标方程为ρ=2cosθ+2sinθ,以极点为原点,极轴为x轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,曲线C2的参数方程为$\left\{\begin{array}{l}{x=2+cosa}\\{y=sina}\end{array}\right.$(a为参数).
(1)求曲线C1的平面直角坐标方程和曲线C2的极坐标方程;
(2)点P是曲线C2上一动点,求点P到直线ρsin(θ-$\frac{π}{3}$)=3的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)=$\left\{\begin{array}{l}{a{x}^{2}+x,x>0}\\{-2x,x≤0}\end{array}\right.$,若不等式f(x-2)≥f(x)对一切x∈R恒成立,则a的最大值为-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案