| A. | $\frac{2\sqrt{3}}{3}$ | B. | $\sqrt{3}$+1 | C. | $\frac{\sqrt{5}}{2}$ | D. | $\sqrt{5}$ |
分析 运用向量的减法和数量积的性质:向量的平方即为模的平方,可得|$\overrightarrow{OP}$|=|$\overrightarrow{O{F}_{2}}$|=|$\overrightarrow{O{F}_{1}}$|=c,即有PF1⊥PF2,由双曲线的定义结合条件,可得|PF1|=4a,|PF2|=2a,运用勾股定理可得2c=2$\sqrt{5}$a,由离心率公式可得.
解答 解:$({\overrightarrow{OP}+\overrightarrow{O{F_2}}})•\overrightarrow{{F_2}P}=0$,即为
($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)•($\overrightarrow{OP}$-$\overrightarrow{O{F}_{2}}$)=0,
即有$\overrightarrow{OP}$2-$\overrightarrow{O{F}_{2}}$2=0,
可得|$\overrightarrow{OP}$|=|$\overrightarrow{O{F}_{2}}$|=|$\overrightarrow{O{F}_{1}}$|=c,
即有PF1⊥PF2,
由双曲线的定义可得|$\overrightarrow{P{F}_{1}}$|-|$\overrightarrow{P{F}_{2}}$|=2a,
又|$\overrightarrow{P{F}_{1}}$|=2|$\overrightarrow{P{F}_{2}}$|,
可得|PF1|=4a,|PF2|=2a,
由勾股定理可得|F1F2|=$\sqrt{16{a}^{2}+4{a}^{2}}$=2$\sqrt{5}$a,
即有2c=2$\sqrt{5}$a,
即e=$\frac{c}{a}$=$\sqrt{5}$.
故选:D.
点评 本题考查双曲线的离心率的求法,注意运用双曲线的定义和向量数量积的性质,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\frac{{\sqrt{5}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3+\sqrt{7}}{2}$ | B. | $\frac{3-\sqrt{7}}{2}$ | C. | 3-$\sqrt{7}$ | D. | 3+$\sqrt{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±2x | B. | y=±$\sqrt{2}$x | C. | y=±$\frac{1}{2}$x | D. | y=±$\frac{\sqrt{2}}{2}$x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{2\sqrt{3}}{3}$ | C. | 2或$\frac{2\sqrt{3}}{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com