精英家教网 > 高中数学 > 题目详情
10.已知O为坐标原点,双曲线$C:\frac{x^2}{a^2}-{y^2}=1(a>0)$上有一点P,过点P作双曲线C的两条渐近线的平行线,与两渐近线的交点分别为A,B,若平行四边形OAPB的面积为1,则双曲线C的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\frac{{\sqrt{5}}}{2}$

分析 求得双曲线的渐近线方程,设P(m,n)是双曲线上任一点,设过P平行于x+ay=0的直线为l,求得l的方程,联立另一条渐近线可得交点A,|OA|,求得P到OA的距离,由平行四边形的面积公式,化简整理,解方程可得a=2,求得c,进而得到所求双曲线的离心率.

解答 解:由双曲线方程可得渐近线方程x±ay=0,
设P(m,n)是双曲线上任一点,设过P平行于x+ay=0的直线为l,
则l的方程为:x+ay-m-an=0,l与渐近线x-ay=0交点为A,
则A($\frac{m+an}{2}$,$\frac{m+an}{2a}$),|OA|=|$\frac{m+an}{2}$|$\sqrt{1+\frac{1}{a^2}}$,
P点到OA的距离是:$d=\frac{{|{m-an}|}}{{\sqrt{1+{a^2}}}}$,
∵|OA|•d=1,∴|$\frac{m+an}{2}$|•$\sqrt{1+\frac{1}{a^2}}$.$\frac{{|{m-an}|}}{{\sqrt{1+{a^2}}}}$=1,
∵$\frac{m^2}{a^2}-{n^2}=1$,∴a=2,∴$c=\sqrt{5}$,
∴$e=\frac{{\sqrt{5}}}{2}$.
故选:D.

点评 本题考查双曲线的离心率的求法,注意运用渐近线方程和两直线平行的条件:斜率相等,联立方程求交点,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的渐近线方程与圆(x-$\sqrt{3}$)2+(y-1)2=1相切,则此双曲线的离心率为(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.要得到函数y=cos(2x-$\frac{π}{3}$)图象,只需将函数y=sin($\frac{π}{2}$+2x)图象(  )
A.向左平移$\frac{π}{3}$个单位B.向右平移$\frac{π}{3}$个单位
C.向左平移$\frac{π}{6}$个单位D.向右平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示的数阵中,用A(m,n)表示第m行的第n个数,则依此规律A(8,2)为(  )
A.$\frac{2}{3}$B.$\frac{5}{6}$C.$\frac{7}{12}$D.$\frac{11}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设F1,F2分别是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,若双曲线右支上存在一点P,使得(${\overrightarrow{OP}$+$\overrightarrow{O{F_2}}}$)•$\overrightarrow{{F_2}P}$=0,其中O为坐标原点,且|${\overrightarrow{P{F_1}}}$|=2|${\overrightarrow{P{F_2}}}$|,则该双曲线的离心率为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{3}$+1C.$\frac{\sqrt{5}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.对于双曲线C(a,b):$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),若点P(x0,y0)满足$\frac{{x}_{0}^{2}}{{a}^{2}}$-$\frac{{y}_{0}^{2}}{{b}^{2}}$<1,则称P在C(a,b)的外部,若点P(x0,y0)满足$\frac{{x}_{0}^{2}}{{a}^{2}}$-$\frac{{y}_{0}^{2}}{{b}^{2}}$>1,则称C(a,b)在的内部;
(1)若直线y=kx+1上的点都在C(1,1)的外部,求k的取值范围;
(2)若C(a,b)过点(2,1),圆x2+y2=r2(r>0)在C(a,b)内部及C(a,b)上的点构成的圆弧长等于该圆周长的一半,求b、r满足的关系式及r的取值范围;
(3)若曲线|xy|=mx2+1(m>0)上的点都在C(a,b)的外部,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中,x=0是极值点的函数是(  )
A.y=-x3B.y=x2C.y=tanx-xD.y=$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.双曲线${x^2}-\frac{y^2}{3}=1$的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图的程序框图输出S的值为(  )
A.16B.32C.64D.128

查看答案和解析>>

同步练习册答案