精英家教网 > 高中数学 > 题目详情
4.双曲线$\frac{y^2}{9}-\frac{x^2}{b^2}=1$的离心率为2,则双曲线的焦点到渐近线的距离是3$\sqrt{3}$.

分析 求得双曲线的a=3,由离心率公式可得c=6,解得b,求出渐近线方程和焦点,运用点到直线的距离公式,计算即可得到所求值.

解答 解:双曲线$\frac{y^2}{9}-\frac{x^2}{b^2}=1$的a=3,c=$\sqrt{9+{b}^{2}}$,
由e=$\frac{c}{a}$=2,即有c=2a=6,
即$\sqrt{9+{b}^{2}}$=6,解得b=3$\sqrt{3}$.
渐近线方程为y=±$\frac{\sqrt{3}}{3}$x,即为$\sqrt{3}$x±3y=0,
则双曲线的焦点(0,6)到渐近线的距离是$\frac{|3×6|}{\sqrt{3+9}}$=3$\sqrt{3}$.
故答案为:3$\sqrt{3}$.

点评 本题考查双曲线的焦点到渐近线的距离,注意运用点到直线的距离公式,考查离心率公式的运用,以及运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的渐近线方程为y=$±\frac{1}{3}x$,则此双曲线的离心率为(  )
A.$\frac{{2\sqrt{2}}}{3}$B.$\frac{{\sqrt{10}}}{3}$C.3D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,E为AD的中点,M是棱PC的中点,PA=PD=2,$BC=\frac{1}{2}AD=1$,$CD=\sqrt{3}$.
(1)求证:PE⊥平面ABCD;
(2)求直线BM与平面ABCD所成角的正切值;
(3)求直线BM与CD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线y=2x是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一条渐近线,点A(1,0),M(m,n)(n≠0)都在双曲线C上,直线AM与y轴相交于点P,设坐标原点为O.
(1)求双曲线C的方程,并求出点P的坐标(用m,n表示);
(2)设点M关于y轴的对称点为N,直线AN与y轴相交于点Q,问:在x轴上是否存在定点T,使得TP⊥TQ?若存在,求出点T的坐标;若不存在,请说明理由.
(3)若过点D(0,2)的直线l与双曲线C交于R,S两点,且|$\overrightarrow{OR}$+$\overrightarrow{OS}$|=|$\overrightarrow{RS}$|,试求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,c是半焦轴距,P是双曲线上异于顶点的点,满足ctan∠PF1F2=atan∠PF2F1,则双曲线的离心率e的取值范围是(  )
A.(1,1+$\sqrt{2}$)B.($\sqrt{2}$,1+$\sqrt{2}$)C.(1+$\sqrt{2}$,1+$\sqrt{3}$)D.(1+$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的一条渐近线l的倾斜角为$\frac{π}{3}$,且C的一个焦点到l的距离为$\sqrt{3}$,则C的方程为x2-$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(I)比较(x+1)(x-3)与(x+2)(x-4)的大小;
(Ⅱ)解不等式|x2-5x+5|<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将偶函数g(x)的图象向右平移$\frac{π}{6}$个单位,得到函数f(x)的图象,若f(x)=Asinωx(a≠0,ω>0),则ω的值可以为(  )
A.6B.3C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设α,β,γ为平面,m,n,l为直线,则m⊥β的一个充分条件是(  )
A.α⊥β,α∩β=l,m⊥lB.n⊥α,m⊥α,n⊥βC.α⊥γ,β⊥γ,m⊥αD.α⊥γ,α∩γ=m,β⊥γ

查看答案和解析>>

同步练习册答案