精英家教网 > 高中数学 > 题目详情
15.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,E为AD的中点,M是棱PC的中点,PA=PD=2,$BC=\frac{1}{2}AD=1$,$CD=\sqrt{3}$.
(1)求证:PE⊥平面ABCD;
(2)求直线BM与平面ABCD所成角的正切值;
(3)求直线BM与CD所成角的余弦值.

分析 (1)推导出PE⊥AD,平面PAD⊥平面ABCD,由此能证明PE⊥平面ABCD.
(2)连结EC,取EC中点H,连结MH、HB,则MH∥PE,从而∠MBH即为BM与平面ABCD所成角,由此能求出直线BM与平面ABCD所成角的正切值.
(3)由CD∥BE,得直线BM与CD所成角即为直线BM与BE所成角,由此能求出直线BM与CD所成角的余弦值.

解答 证明:(1)∵PA=PD,E为AD的中点,∴PE⊥AD
又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴PE⊥平面ABCD.
解:(2)连结EC,取EC中点H,连结MH、HB,
∵M是PC的中点,H是EC的中点,∴MH∥PE,
由(1)知PE⊥平面ABCD,∴MH⊥平面ABCD,
∴HB是BM在平面ABCD内的射影,
∴∠MBH即为BM与平面ABCD所成角,
∵AD∥BC,BC=$\frac{1}{2}$AD,E为AD的中点,∠ADC=90°,
∴四边形BCDE为矩形,∴EC=2,HB=$\frac{1}{2}EC=1$,
又∵MH=$\frac{1}{2}$PE=$\frac{\sqrt{3}}{2}$,∴△MHB中,tan$∠MBH=\frac{MH}{HB}$=$\frac{\sqrt{3}}{2}$,
∴直线BM与平面ABCD所成角的正切值为$\frac{\sqrt{3}}{2}$.
(3)由(2)知CD∥BE,
∴直线BM与CD所成角即为直线BM与BE所成角
连接ME,Rt△MHE中,$ME=\frac{{\sqrt{7}}}{2}$,
Rt△MHB中,$BM=\frac{{\sqrt{7}}}{2}$,又$BE=CD=\sqrt{3}$,
∴△MEB中,$cos∠MBE=\frac{{B{M^2}+B{E^2}-M{E^2}}}{2BM•BE}=\frac{{\frac{7}{4}+3-\frac{7}{4}}}{{2×\frac{{\sqrt{7}}}{2}×\sqrt{3}}}=\frac{{\sqrt{21}}}{7}$,
∴直线BM与CD所成角的余弦值为$\frac{{\sqrt{21}}}{7}$.

点评 本题考查线面垂直的证明,考查线面角的正弦值和线线角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知A为△ABC的一个内角,且$sinA+cosA=\frac{{\sqrt{2}}}{3}$,则△ABC的形状是(  )
A.锐角三角形B.钝角三角形C.直角三角形D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.经过双曲线$\frac{{x}^{2}}{4}$-y2=1右焦点的直线与双曲线交于A,B两点,若|AB|=4,则这样的直线的条数为(  )
A.4条B.3条C.2条D.1条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,已知四边形ABCD中,AB=CD=1,AD=$\sqrt{2}$BC=2,∠A+∠C=$\frac{3π}{4}$.则BD的长为$\frac{\sqrt{65}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设Sn是数列{an}的前n项和,an>0,且${S_n}=\frac{1}{6}{a_n}({a_n}+3)$.
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{1}{{({a_n}-1)({a_n}+2)}}$,Tn=b1+b2+…+bn,求证:${T_n}<\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知F是双曲线C:x2-$\frac{{y}^{2}}{8}$=1的右焦点,若P是C的左支上一点,A(0,6$\sqrt{6}$)是y轴上一点,则△APF周长的最小值为32.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知F是双曲线C:x2-$\frac{{y}^{2}}{8}$=1的右焦点,若P是C的左支上一点,A(0,6$\sqrt{6}$)是y轴上一点,则△APF面积的最小值为6+9$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.双曲线$\frac{y^2}{9}-\frac{x^2}{b^2}=1$的离心率为2,则双曲线的焦点到渐近线的距离是3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某地区18岁的女青年的血压服从正态分布N(110,122).在该地区随机地选一女青年,测量她的血压X,求P{X≤105},P{100<X≤120};确定最小的x,使P{X>x}≤0.05.(结果用Φ(x)或其反函数表示)

查看答案和解析>>

同步练习册答案