| A. | 4条 | B. | 3条 | C. | 2条 | D. | 1条 |
分析 根据题意,求得a、b的值,根据直线与双曲线相交的情形,分两种情况讨论:①AB只与双曲线右支相交,②AB与双曲线的两支都相交,分析其弦长的最小值,可得符合条件的直线的数目,综合可得答案.
解答 解:由双曲线$\frac{{x}^{2}}{4}$-y2=1,可得a=2,b=1.
若AB只与双曲线右支相交时,AB的最小距离是通径,
长度为$\frac{2{b}^{2}}{a}$=1,
∵AB=4>1,∴此时有两条直线符合条件;
若AB与双曲线的两支都相交时,此时AB的最小距离是实轴两顶点的距离,
长度为2a=4,距离无最大值,
∵AB=4,∴此时有1条直线符合条件;
综合可得,有3条直线符合条件.
故选:B.
点评 本题考查直线与双曲线的关系,解题时可以结合双曲线的几何性质,分析直线与双曲线的相交的情况,分析其弦长最小值,从而求解,可避免由弦长公式进行计算.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{2b}{a}$,+∞) | B. | ($\frac{b}{a}$,+∞) | C. | [$\frac{b}{a}$,+∞) | D. | [$\frac{b}{a}$,$\frac{2b}{a}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{2\sqrt{2}}}{3}$ | B. | $\frac{{\sqrt{10}}}{3}$ | C. | 3 | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x-1)2+y2=4 | B. | (x+1)2+y2=2 | C. | (x+1)2+y2=1 | D. | (x+1)2+y2=4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2015}{2016}$ | B. | $\frac{4028}{2015}$ | C. | $\frac{4032}{2017}$ | D. | $\frac{2014}{2015}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com