精英家教网 > 高中数学 > 题目详情
6.经过双曲线$\frac{{x}^{2}}{4}$-y2=1右焦点的直线与双曲线交于A,B两点,若|AB|=4,则这样的直线的条数为(  )
A.4条B.3条C.2条D.1条

分析 根据题意,求得a、b的值,根据直线与双曲线相交的情形,分两种情况讨论:①AB只与双曲线右支相交,②AB与双曲线的两支都相交,分析其弦长的最小值,可得符合条件的直线的数目,综合可得答案.

解答 解:由双曲线$\frac{{x}^{2}}{4}$-y2=1,可得a=2,b=1.
若AB只与双曲线右支相交时,AB的最小距离是通径,
长度为$\frac{2{b}^{2}}{a}$=1,
∵AB=4>1,∴此时有两条直线符合条件;
若AB与双曲线的两支都相交时,此时AB的最小距离是实轴两顶点的距离,
长度为2a=4,距离无最大值,
∵AB=4,∴此时有1条直线符合条件;
综合可得,有3条直线符合条件.
故选:B.

点评 本题考查直线与双曲线的关系,解题时可以结合双曲线的几何性质,分析直线与双曲线的相交的情况,分析其弦长最小值,从而求解,可避免由弦长公式进行计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.$\frac{tan\frac{π}{8}}{1-ta{n}^{2}\frac{π}{8}}$等于(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知A,B分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右顶点,P是双曲线C右支上位于第一象限的动点,设PA,PB的斜率分别为k1,k2,则k1+k2的取值范围为(  )
A.($\frac{2b}{a}$,+∞)B.($\frac{b}{a}$,+∞)C.[$\frac{b}{a}$,+∞)D.[$\frac{b}{a}$,$\frac{2b}{a}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的渐近线方程为y=$±\frac{1}{3}x$,则此双曲线的离心率为(  )
A.$\frac{{2\sqrt{2}}}{3}$B.$\frac{{\sqrt{10}}}{3}$C.3D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系中,已知曲线C1:$\frac{x^2}{a^2}+{y^2}$=1(0<a<2),曲线C2:x2+y2-x-y=0,Q是C2上的动点,P是线段OQ延长线上的一点,且P满足|OQ|•|OP|=4.
(Ⅰ)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,化C2的方程为极坐标方程,并求点P的轨迹C3的方程;
(Ⅱ)设M、N分别是C1与C3上的动点,若|MN|的最小值为$\sqrt{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知圆C的圆心与双曲线4x2-$\frac{4}{3}{y^2}$=1的左焦点重合,又直线4x-3y-6=0与圆C相切,则圆C的标准方程为(  )
A.(x-1)2+y2=4B.(x+1)2+y2=2C.(x+1)2+y2=1D.(x+1)2+y2=4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.数列{an}满足a1=1,且an+1=a1+an+n(n∈N*),则$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2016}}$等于(  )
A.$\frac{2015}{2016}$B.$\frac{4028}{2015}$C.$\frac{4032}{2017}$D.$\frac{2014}{2015}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,E为AD的中点,M是棱PC的中点,PA=PD=2,$BC=\frac{1}{2}AD=1$,$CD=\sqrt{3}$.
(1)求证:PE⊥平面ABCD;
(2)求直线BM与平面ABCD所成角的正切值;
(3)求直线BM与CD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(I)比较(x+1)(x-3)与(x+2)(x-4)的大小;
(Ⅱ)解不等式|x2-5x+5|<1.

查看答案和解析>>

同步练习册答案