精英家教网 > 高中数学 > 题目详情
1.在平面直角坐标系中,已知曲线C1:$\frac{x^2}{a^2}+{y^2}$=1(0<a<2),曲线C2:x2+y2-x-y=0,Q是C2上的动点,P是线段OQ延长线上的一点,且P满足|OQ|•|OP|=4.
(Ⅰ)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,化C2的方程为极坐标方程,并求点P的轨迹C3的方程;
(Ⅱ)设M、N分别是C1与C3上的动点,若|MN|的最小值为$\sqrt{2}$,求a的值.

分析 (Ⅰ)由x=ρcosθ,y=ρsinθ代入曲线C2,运用三角函数的恒等变换可得极坐标方程;设Q(ρ',θ),P(ρ,θ),代入极坐标方程,化简整理可得所求点P的轨迹C3的方程;
(Ⅱ)设M(acosθ,sinθ),运用点到直线的距离公式,结合辅助角公式和正弦函数的值域,可得最小值,解方程可得a的值.

解答 解:(Ⅰ)由x=ρcosθ,y=ρsinθ,代入曲线C2:x2+y2-x-y=0,
即为ρ2-ρ(sinθ+cosθ)=0,
可得C2的极坐标方程为$ρ=\sqrt{2}sin(θ+\frac{π}{4})$,
设Q(ρ',θ),P(ρ,θ),则$ρ'=\sqrt{2}sin(θ+\frac{π}{4})$,
由|OQ|•|OP|=4得ρ'•ρ=4,从而$\sqrt{2}ρsin(θ+\frac{π}{4})=4$,
即有$\sqrt{2}$ρ($\frac{\sqrt{2}}{2}$sinθ+$\frac{\sqrt{2}}{2}$cosθ)=4,
故C3的直角坐标方程为x+y=4;
(Ⅱ)设M(acosθ,sinθ),
则M到直线C3的距离$d=\frac{{|{acosθ+sinθ-4}|}}{{\sqrt{2}}}=\frac{{|{\sqrt{{a^2}+1}sin(θ+φ)-4}|}}{{\sqrt{2}}}≥\frac{{4-\sqrt{{a^2}+1}}}{{\sqrt{2}}}$,
所以$\frac{4-\sqrt{1+{a}^{2}}}{\sqrt{2}}$=$\sqrt{2}$,
解得$a=\sqrt{3}$.

点评 本题考查直角坐标与极坐标的转化,考查椭圆的参数方程的运用,以及点到直线的距离公式,考查三角函数的辅助角公式和正弦函数的值域的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在直三棱柱ABC-A1B1C1中,CA=CB,AA1=$\sqrt{2}$AB,D是AB的中点
(1)求证:BC1∥平面A1CD;
(2)若点P在线段BB1上,且BP=$\frac{1}{4}$BB1,求证:AP⊥平面A1CD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一条渐近线与抛物线y2=2px(p>0)的准线的交点坐标为$(-\frac{4}{3},\frac{8}{3})$,且双曲线与抛物线的一个公共点M的坐标(x0,4),则双曲线的方程为$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)与圆x2+y2=c2(c=$\sqrt{{a}^{2}+{b}^{2}}$)交A、B、C、D四点,若四边形ABCD是正方形,则双曲线的渐近线方程为(  )
A.y=±$\sqrt{1+\sqrt{2}}$xB.y=±$\sqrt{2}$xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\sqrt{\sqrt{2}-1}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=3x-($\frac{1}{2}$)x的零点存在区间为(  )
A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.经过双曲线$\frac{{x}^{2}}{4}$-y2=1右焦点的直线与双曲线交于A,B两点,若|AB|=4,则这样的直线的条数为(  )
A.4条B.3条C.2条D.1条

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1的一个焦点在抛物线y2=8x的准线上,则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设Sn是数列{an}的前n项和,an>0,且${S_n}=\frac{1}{6}{a_n}({a_n}+3)$.
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{1}{{({a_n}-1)({a_n}+2)}}$,Tn=b1+b2+…+bn,求证:${T_n}<\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等差数列{an}的公差d=1,记{an}的前n项和为Sn,且满足S3+S5=S6
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}={2^{a_n}}$,求使得bk+bk+1+bk+2+…+b2k-1=240的正整数k的值.

查看答案和解析>>

同步练习册答案