精英家教网 > 高中数学 > 题目详情
1.在直三棱柱ABC-A1B1C1中,CA=CB,AA1=$\sqrt{2}$AB,D是AB的中点
(1)求证:BC1∥平面A1CD;
(2)若点P在线段BB1上,且BP=$\frac{1}{4}$BB1,求证:AP⊥平面A1CD.

分析 (1)连接AC1,设与CA1 交于O点,连接OD,由O为AC1 的中点,D是AB的中点,可得OD∥BC1,即可证明BC1∥平面A1CD.
(2)法一:设AB=x,则证明△ABP∽△ADA1,可得AP⊥A1D,又由线面垂直的性质可得CD⊥AP,从而可证AP⊥平面A1CD;
法二:由题意,取A1B1 的中点O,连接OC1,OD,分别以OC1,OA1,OD为x,y,z轴建立空间直角坐标系,设OA1=a,OC1=b,由题意可得各点坐标,可求$\overrightarrow{{A}_{1}C}$=(b,-a,2$\sqrt{2}a$),$\overrightarrow{{A}_{1}D}$=(0.-a,2$\sqrt{2}a$),$\overrightarrow{AP}$=(0,-2a,-$\frac{\sqrt{2}a}{2}$),由$\overrightarrow{AP}$•$\overrightarrow{{A}_{1}C}$=0,$\overrightarrow{AP}$•$\overrightarrow{{A}_{1}D}$=0,即可证明AP⊥平面A1CD.

解答 证明:(1)如图,连接AC1,设与CA1 交于O点,连接OD
∴直三棱柱ABC-A1B1C1中,O为AC1 的中点,
∵D是AB的中点,
∴△ABC1中,OD∥BC1
又∵OD?平面A1CD,
∴BC1∥平面A1CD.
(2)法一:由题意,设AB=x,则BP=$\frac{\sqrt{2}}{4}$x,AD=$\frac{1}{2}$x,A1A=$\sqrt{2}$x,
由于$\frac{BP}{AD}=\frac{AB}{A{A}_{1}}$=$\frac{\sqrt{2}}{2}$,
∴△ABP∽△ADA1,可得∠BAP=∠AA1D,
∵∠DA1A+∠ADA1=90°,可得:AP⊥A1D,
又∵CD⊥AB,CD⊥BB1,可得CD⊥平面ABA1B1
∴CD⊥AP,
∴AP⊥平面A1CD.
法二:由题意,取A1B1 的中点O,连接OC1,OD,分别以OC1
OA1,OD为x,y,z轴建立空间直角坐标系,设OA1=a,OC1=b,
则:由题意可得各点坐标为:A1(0,a,0),C(b,0,2$\sqrt{2}$a),
D(0,0,2$\sqrt{2}a$),P(0,-a,$\frac{3\sqrt{2}a}{2}$),A(0,a,2$\sqrt{2}a$),
可得:$\overrightarrow{{A}_{1}C}$=(b,-a,2$\sqrt{2}a$),$\overrightarrow{{A}_{1}D}$=(0.-a,2$\sqrt{2}a$),
$\overrightarrow{AP}$=(0,-2a,-$\frac{\sqrt{2}a}{2}$),
所以:由$\overrightarrow{AP}$•$\overrightarrow{{A}_{1}C}$=0,可得:AP⊥A1C,由$\overrightarrow{AP}$•$\overrightarrow{{A}_{1}D}$=0,
可得:AP⊥A1D,
又:A1 C∩A1 D=A1
所以:AP⊥平面A1CD

点评 本题主要考查了直线与平面平行的判定,直线与平面垂直的判定,考查了空间想象能力和推理论证能力,解题时要认真审题,注意向量法的合理运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.甲、乙两位同学玩“套圈”游戏:距离目标2m,轮流对同一目标进行投圈,谁先套住目标谁获胜,已知甲、乙各自套中的概率分别为0.6和0.7,甲先投,求甲恰好套完第三个圈后获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设直线l:3x+4y+a=0,圆C:(x-2)2+y2=4,若在直线l上存在一点M,使得过M的圆C的切线MP,MQ(P,Q为切点)满足∠PMQ=90°,则a的取值范围是(  )
A.[-18,6]B.[6-5$\sqrt{2}$,6+5$\sqrt{2}$]C.[-16,4]D.[-6-5$\sqrt{2}$,-6+5$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=$\left\{\begin{array}{l}{-\frac{3}{x},x<-1}\\{{x}^{2}-1,-1≤x<2}\end{array}\right.$的定义域是{x|x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=x2+4x-1的增区间是(  )
A.(0,+∞)B.(-4,+∞)C.(-2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.$\frac{tan\frac{π}{8}}{1-ta{n}^{2}\frac{π}{8}}$等于(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=-sin$\frac{π}{2}$x-1,g(x)=logax(a>0且a≠1),若F(x)=f(x)-g(x)至少有三个零点,则实数a的取值范围是(  )
A.(0,$\frac{\sqrt{5}}{5}$)B.($\frac{\sqrt{5}}{5}$,1)C.($\frac{\sqrt{3}}{3}$,1)D.(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,当$\overrightarrow{{P}_{1}P}$=λ$\overrightarrow{P{P}_{2}}$时,点P的坐标是什么?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系中,已知曲线C1:$\frac{x^2}{a^2}+{y^2}$=1(0<a<2),曲线C2:x2+y2-x-y=0,Q是C2上的动点,P是线段OQ延长线上的一点,且P满足|OQ|•|OP|=4.
(Ⅰ)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,化C2的方程为极坐标方程,并求点P的轨迹C3的方程;
(Ⅱ)设M、N分别是C1与C3上的动点,若|MN|的最小值为$\sqrt{2}$,求a的值.

查看答案和解析>>

同步练习册答案