分析 设出点P1、P2、P的坐标,利用向量坐标表示出$\overrightarrow{{P}_{1}P}$、$\overrightarrow{{PP}_{2}}$,利用向量相等列出方程求出x、y的值即可.
解答 解:设点P1(x1,y1),点P2(x2,y2),点P(x,y);
则$\overrightarrow{{P}_{1}P}$=(x-x1,y-y1),$\overrightarrow{{PP}_{2}}$=(x2-x,y2-y),
当$\overrightarrow{{P}_{1}P}$=λ$\overrightarrow{P{P}_{2}}$时,(x-x1,y-y1)=λ(x2-x,y2-y),
∴$\left\{\begin{array}{l}{x{-x}_{1}=λ{(x}_{2}-x)}\\{y{-y}_{1}=λ({y}_{2}-y)}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=\frac{{x}_{1}+{λx}_{2}}{1+λ}}\\{y=\frac{{y}_{1}+{λy}_{2}}{1+λ}}\end{array}\right.$,
∴点P的坐标是($\frac{{x}_{1}+{λx}_{2}}{1+λ}$,$\frac{{y}_{1}+{λy}_{2}}{1+λ}$).
点评 本题考查了平面向量的坐标运算问题,也考查了转化法与数形结合思想的应用问题,是基础题目.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5π}{12}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 锐角三角形 | B. | 钝角三角形 | C. | 直角三角形 | D. | 不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±$\sqrt{1+\sqrt{2}}$x | B. | y=±$\sqrt{2}$x | C. | y=±$\frac{\sqrt{2}}{2}$x | D. | y=±$\sqrt{\sqrt{2}-1}$x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com