精英家教网 > 高中数学 > 题目详情
5.用1,2,3,4这四个数字组成比2000大,且百位数不是1的无重复数字的四位数有多少个?

分析 分数字1在各位或十位上两种情况讨论,利用分类加法计数原理计算即得结论.

解答 解:依题意,数字1只能在各位或十位上,
当个位上为1时,有${A}_{3}^{3}$=6个;
当十位上为1时,有${A}_{3}^{3}$=6个;
故满足题意的个数有6+6=12个.

点评 本题考查排列、组合及简单计数问题,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设Sn是数列{an}的前n项和,an>0,且Sn=$\frac{1}{6}$an(an+3)
(1)求数列{an}的通项公式;
(2)设cn=$\frac{{a}_{n}}{{2}^{n-1}}$,Bn是数列{cn}的前n项和,求Bn.(若改为cn=an+2n-1呢?)
(3)设bn=$\frac{1}{{(a}_{n}-1)({a}_{n}+2)}$,Tn=b1+b2+…+bn,求证:Tn<$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=x2+4x-1的增区间是(  )
A.(0,+∞)B.(-4,+∞)C.(-2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=-sin$\frac{π}{2}$x-1,g(x)=logax(a>0且a≠1),若F(x)=f(x)-g(x)至少有三个零点,则实数a的取值范围是(  )
A.(0,$\frac{\sqrt{5}}{5}$)B.($\frac{\sqrt{5}}{5}$,1)C.($\frac{\sqrt{3}}{3}$,1)D.(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知甲袋中装有大小、形状、质地、相同的3个白球和2个红球,乙袋中装有1个白球和4个红球,现从甲、乙两袋中各摸一个球,试求:
(1)两球都是红球的概率;
(2)恰有一个是红球的概率;
(3)至少有一个是红球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,当$\overrightarrow{{P}_{1}P}$=λ$\overrightarrow{P{P}_{2}}$时,点P的坐标是什么?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在平面直角坐标系xOy中,已知△ABC的顶点B(-5,0)和C(5,0),顶点A在双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$的右支上,则$\frac{sinC-sinB}{sinA}$=$\frac{3}{5}$?.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知点F1,F2为双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左,右焦点,点P在双曲线C的右支上,且满足|PF2|=|F1F2|,∠F1F2P=120°,则双曲线的离心率为$\frac{\sqrt{3}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}前n项和为Sn,且满足3Sn-4an+2=0.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=log2an,Tn为{bn}的前n项和,求证:$\sum_{k=1}^n{\frac{1}{{T{\;}_k}}}<2$.

查看答案和解析>>

同步练习册答案