精英家教网 > 高中数学 > 题目详情
10.设Sn是数列{an}的前n项和,an>0,且${S_n}=\frac{1}{6}{a_n}({a_n}+3)$.
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{1}{{({a_n}-1)({a_n}+2)}}$,Tn=b1+b2+…+bn,求证:${T_n}<\frac{1}{6}$.

分析 (1)通过${S_n}=\frac{1}{6}{a_n}({a_n}+3)$与Sn-1=$\frac{1}{6}$an-1(an-1+3)作差,进而可知数列{an}是首项、公差均为3的等差数列,计算即得结论;
(2)通过(1)裂项可知bn=$\frac{1}{3}$($\frac{1}{3n-1}$-$\frac{1}{3n+2}$),进而并项相加即得结论.

解答 (1)解:∵${S_n}=\frac{1}{6}{a_n}({a_n}+3)$,Sn-1=$\frac{1}{6}$an-1(an-1+3),
∴an=$\frac{1}{6}$[${{a}_{n}}^{2}$+3an-(${{a}_{n-1}}^{2}$+3an-1)],
整理得:${{a}_{n}}^{2}$-${{a}_{n-1}}^{2}$=3(an+an-1),
又∵an>0,
∴an-an-1=3,
又∵a1=$\frac{1}{6}$a1(a1+3),即a1=3或a1=0(舍),
∴数列{an}是首项、公差均为3的等差数列,
∴其通项公式an=3n;
(2)证明:由(1)可知${b_n}=\frac{1}{{({a_n}-1)({a_n}+2)}}$=$\frac{1}{(3n-1)(3n+2)}$=$\frac{1}{3}$($\frac{1}{3n-1}$-$\frac{1}{3n+2}$),
∴Tn=b1+b2+…+bn
=$\frac{1}{3}$($\frac{1}{2}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{8}$+…+$\frac{1}{3n-1}$-$\frac{1}{3n+2}$)
=$\frac{1}{3}$($\frac{1}{2}$-$\frac{1}{3n+2}$)
<$\frac{1}{6}$.

点评 本题考查数列的通项及前n项和,考查裂项相消法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,当$\overrightarrow{{P}_{1}P}$=λ$\overrightarrow{P{P}_{2}}$时,点P的坐标是什么?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系中,已知曲线C1:$\frac{x^2}{a^2}+{y^2}$=1(0<a<2),曲线C2:x2+y2-x-y=0,Q是C2上的动点,P是线段OQ延长线上的一点,且P满足|OQ|•|OP|=4.
(Ⅰ)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,化C2的方程为极坐标方程,并求点P的轨迹C3的方程;
(Ⅱ)设M、N分别是C1与C3上的动点,若|MN|的最小值为$\sqrt{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.数列{an}满足a1=1,且an+1=a1+an+n(n∈N*),则$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2016}}$等于(  )
A.$\frac{2015}{2016}$B.$\frac{4028}{2015}$C.$\frac{4032}{2017}$D.$\frac{2014}{2015}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}前n项和为Sn,且满足3Sn-4an+2=0.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=log2an,Tn为{bn}的前n项和,求证:$\sum_{k=1}^n{\frac{1}{{T{\;}_k}}}<2$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,E为AD的中点,M是棱PC的中点,PA=PD=2,$BC=\frac{1}{2}AD=1$,$CD=\sqrt{3}$.
(1)求证:PE⊥平面ABCD;
(2)求直线BM与平面ABCD所成角的正切值;
(3)求直线BM与CD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.双曲线$\frac{x^2}{4}-\frac{y^2}{b^2}=1$的右焦点与抛物线${y^2}=8\sqrt{2}x$的焦点重合,则该双曲线的渐近线的方程是y=±x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,c是半焦轴距,P是双曲线上异于顶点的点,满足ctan∠PF1F2=atan∠PF2F1,则双曲线的离心率e的取值范围是(  )
A.(1,1+$\sqrt{2}$)B.($\sqrt{2}$,1+$\sqrt{2}$)C.(1+$\sqrt{2}$,1+$\sqrt{3}$)D.(1+$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=3cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数).
(Ⅰ)求曲线C1的普通方程;
(Ⅱ)已知曲线C2:$\left\{\begin{array}{l}{x=rcosα}\\{y=rsinα}\end{array}\right.$(α为参数),且曲线C1、C2的交点形成一正方形,求该正方形的面积.

查看答案和解析>>

同步练习册答案