20£®ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=3cos¦È}\\{y=\sqrt{3}sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£®
£¨¢ñ£©ÇóÇúÏßC1µÄÆÕͨ·½³Ì£»
£¨¢ò£©ÒÑÖªÇúÏßC2£º$\left\{\begin{array}{l}{x=rcos¦Á}\\{y=rsin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÇÒÇúÏßC1¡¢C2µÄ½»µãÐγÉÒ»Õý·½ÐΣ¬Çó¸ÃÕý·½ÐεÄÃæ»ý£®

·ÖÎö £¨I£©¸ù¾Ýͬ½ÇÈý½Çº¯ÊýµÄ¹ØÏµÐ¤²ÎÊý¦ÈµÃ³öÆÕͨ·½³Ì£»
£¨II£©¸ù¾ÝÇúÏߵĶԳÆÐÔ¿ÉÖªÇúÏß½»µãÔÚÏóÏÞµÄ½ÇÆ½·ÖÏßÉÏ£¬Çó³ö½»µã×ø±êµÃ³öÕý·½ÐεÄÃæ»ý£®

½â´ð ½â£º£¨I£©ÇúÏßC1µÄÆÕͨ·½³ÌΪ$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{3}=1$£®
£¨II£©ÇúÏßC2µÄÆÕͨ·½³ÌΪx2+y2=r2£®
¡ßÇúÏßC1¡¢C2µÄ½»µãÐγÉÒ»Õý·½ÐΣ¬
¡àÁ½ÇúÏߵĽ»µã×ø±êÔÚÖ±Ïßy=¡ÀxÉÏ£®
ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{y=x}\\{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬½âµÃx=y=$¡À\frac{3}{2}$£®
¡àÁ½ÇúÏßÔÚµÚÒ»ÏóÏÞÄڵĽ»µã×ø±êΪ£¨$\frac{3}{2}$£¬$\frac{3}{2}$£©£®
¡àÇúÏß½»µã¹¹³ÉµÄÕý·½ÐÎÃæ»ýΪS=4¡Á£¨$\frac{3}{2}$£©2=9£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³ÌÓëÆÕͨ·½³ÌµÄת»¯£¬ÇúÏߵĽ»µã×ø±êµÄÇó½â£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÉèSnÊÇÊýÁÐ{an}µÄǰnÏîºÍ£¬an£¾0£¬ÇÒ${S_n}=\frac{1}{6}{a_n}£¨{a_n}+3£©$£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éè${b_n}=\frac{1}{{£¨{a_n}-1£©£¨{a_n}+2£©}}$£¬Tn=b1+b2+¡­+bn£¬ÇóÖ¤£º${T_n}£¼\frac{1}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄ¹«²îd=1£¬¼Ç{an}µÄǰnÏîºÍΪSn£¬ÇÒÂú×ãS3+S5=S6£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Éè${b_n}={2^{a_n}}$£¬ÇóʹµÃbk+bk+1+bk+2+¡­+b2k-1=240µÄÕýÕûÊýkµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÔË«ÇúÏß$\frac{{x}^{2}}{3}$-y2=1µÄ×óÓÒ½¹µãΪ½¹µã£¬ÀëÐÄÂÊΪ$\frac{1}{2}$µÄÍÖÔ²µÄ±ê×¼·½³ÌΪ£¨¡¡¡¡£©
A£®$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{16}$=1B£®$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{8}$=1C£®$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1D£®$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{12}$=1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªÖ±Ïßy=1-xÓëË«ÇúÏßax2+by2=1£¨a£¾0£¬b£¼0£©µÄ½¥½üÏß½»ÓÚA£¬BÁ½µã£¬ÇÒ¹ýÔ­µãºÍÏß¶ÎABÖеãµÄÖ±ÏßµÄбÂÊΪ$-\frac{{\sqrt{3}}}{2}$£¬Ôò$\frac{a}{b}$µÄֵΪ£¨¡¡¡¡£©
A£®$-\frac{{\sqrt{3}}}{2}$B£®$-\frac{{2\sqrt{3}}}{3}$C£®$-\frac{{9\sqrt{3}}}{2}$D£®$-\frac{{2\sqrt{3}}}{27}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Ä³µØÇø18ËêµÄÅ®ÇàÄêµÄѪѹ·þ´ÓÕý̬·Ö²¼N£¨110£¬122£©£®ÔڸõØÇøËæ»úµØÑ¡Ò»Å®ÇàÄ꣬²âÁ¿ËýµÄѪѹX£¬ÇóP{X¡Ü105}£¬P{100£¼X¡Ü120}£»È·¶¨×îСµÄx£¬Ê¹P{X£¾x}¡Ü0.05£®£¨½á¹ûÓæµ£¨x£©»òÆä·´º¯Êý±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑ֪ʵÊýx£¬yÂú×ãÌõ¼þ$\left\{\begin{array}{l}y¡Üx\\ x+y¡Ý2\\ 2x+y¡Ý6\end{array}\right.$£¬Ôòz=3x+2yµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬10]B£®[5£¬10]C£®[8£¬+¡Þ£©D£®[8£¬10]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÔĶÁÈçͼµÄ³ÌÐò¿òͼ£¬ÔËÐÐÏàÓ¦µÄ³ÌÐò£¬Êä³öµÄ½á¹ûΪ£¨¡¡¡¡£©
A£®-2B£®$\frac{1}{2}$C£®-1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÈçͼÊÇÆßλÆÀίΪ¼×£¬ÒÒÁ½Ãû²ÎÈü¸èÊÖ´ò³öµÄ·ÖÊýµÄ¾¥Ò¶Í¼£¨ÆäÖÐm£¬nΪÊý×Ö0¡«9ÖеÄÒ»¸ö£©£¬Ôò¼×¸èÊֵ÷ֵÄÖÚÊýºÍÒÒ¸èÊֵ÷ֵÄÖÐλÊý·Ö±ðΪaºÍb£¬ÔòÒ»¶¨ÓУ¨¡¡¡¡£©
A£®a£¾bB£®a£¼b
C£®a=bD£®a£¬bµÄ´óСÓëm£¬nµÄÖµÓйØ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸