精英家教网 > 高中数学 > 题目详情
19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,c是半焦轴距,P是双曲线上异于顶点的点,满足ctan∠PF1F2=atan∠PF2F1,则双曲线的离心率e的取值范围是(  )
A.(1,1+$\sqrt{2}$)B.($\sqrt{2}$,1+$\sqrt{2}$)C.(1+$\sqrt{2}$,1+$\sqrt{3}$)D.(1+$\sqrt{2}$,+∞)

分析 由题意可得e=$\frac{c}{a}$=$\frac{tan∠P{F}_{2}{F}_{1}}{tan∠P{F}_{1}{F}_{2}}$,设P(m,n)为双曲线的右支上一点,由F1(-c,0),F2(-c,0),运用直线的斜率公式和m>a,解不等式即可得到所求范围.

解答 解:由ctan∠PF1F2=atan∠PF2F1
可得e=$\frac{c}{a}$=$\frac{tan∠P{F}_{2}{F}_{1}}{tan∠P{F}_{1}{F}_{2}}$,
设P(m,n)为双曲线的右支上一点,
由F1(-c,0),F2(c,0),
可得$\frac{tan∠P{F}_{2}{F}_{1}}{tan∠P{F}_{1}{F}_{2}}$=-$\frac{n}{m-c}$•$\frac{m+c}{n}$=-$\frac{m+c}{m-c}$=-1-$\frac{2c}{m-c}$,
由m>a可得-1-$\frac{2c}{m-c}$>-1+$\frac{-2c}{a-c}$=-1+$\frac{2e}{e-1}$,
即有e+1>$\frac{2e}{e-1}$,即e2-2e-1>0,解得e>1+$\sqrt{2}$.
故选:D.

点评 本题考查双曲线的离心率的范围,注意运用直线的斜率公式和双曲线的范围,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)与圆x2+y2=c2(c=$\sqrt{{a}^{2}+{b}^{2}}$)交A、B、C、D四点,若四边形ABCD是正方形,则双曲线的渐近线方程为(  )
A.y=±$\sqrt{1+\sqrt{2}}$xB.y=±$\sqrt{2}$xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\sqrt{\sqrt{2}-1}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设Sn是数列{an}的前n项和,an>0,且${S_n}=\frac{1}{6}{a_n}({a_n}+3)$.
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{1}{{({a_n}-1)({a_n}+2)}}$,Tn=b1+b2+…+bn,求证:${T_n}<\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知F是双曲线C:x2-$\frac{{y}^{2}}{8}$=1的右焦点,若P是C的左支上一点,A(0,6$\sqrt{6}$)是y轴上一点,则△APF面积的最小值为6+9$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点到一条渐近线的距离等于焦距的$\frac{1}{4}$,则该双曲线的离心率为(  )
A.$\frac{\sqrt{2}}{3}$B.$\frac{2\sqrt{2}}{3}$C.$\frac{\sqrt{2}}{4}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.双曲线$\frac{y^2}{9}-\frac{x^2}{b^2}=1$的离心率为2,则双曲线的焦点到渐近线的距离是3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等差数列{an}的公差d=1,记{an}的前n项和为Sn,且满足S3+S5=S6
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}={2^{a_n}}$,求使得bk+bk+1+bk+2+…+b2k-1=240的正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.以双曲线$\frac{{x}^{2}}{3}$-y2=1的左右焦点为焦点,离心率为$\frac{1}{2}$的椭圆的标准方程为(  )
A.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{8}$=1C.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1D.$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{12}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.阅读如图的程序框图,运行相应的程序,输出的结果为(  )
A.-2B.$\frac{1}{2}$C.-1D.2

查看答案和解析>>

同步练习册答案