精英家教网 > 高中数学 > 题目详情
△ABC中,∠C=90°,M是BC的中点,若sin∠BAM=
1
3
,则sin∠BAC=(  )
A、
3
3
B、
6
3
C、
6
6
D、
3
6
考点:解三角形
专题:综合题,解三角形
分析:作出图象,设出未知量,在△ABM中,由正弦定理可得sin∠AMB=
2c
3a
,进而可得cosβ=
2c
3a
,在RT△ACM中,还可得cosβ=
b
(
a
2
)2+b2
,建立等式后可得a=
2
b,再由勾股定理可得c=
3
b,即可得出结论.
解答: 解:如图,设AC=b,AB=c,CM=MB=
a
2
,∠MAC=β,
在△ABM中,由正弦定理可得
a
2
sin∠BAM
=
c
sin∠AMB

代入数据解得sin∠AMB=
2c
3a

故cosβ=cos(
π
2
-∠AMC)=sin∠AMC=sin(π-∠AMB)
=sin∠AMB=
2c
3a

而在RT△ACM中,cosβ=
AC
AM
=
b
(
a
2
)2+b2

故可得
b
(
a
2
)2+b2
2c
3a
,化简可得a4-4a2b2+4b4=(a2-2b22=0,
解之可得a=
2
b,再由勾股定理可得a2+b2=c2,联立可得c=
3
b,
故在RT△ABC中,sin∠BAC=
BC
AB
=
6
3

故选:B.
点评:本题考查正弦定理的应用,涉及三角函数的诱导公式以及勾股定理的应用,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文科)若方程
x2
5-m
+
y2
m+3
=1是椭圆”,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).求直线被圆C截得的弦长最小时l的方程.(  )
A、x-2y-1=0
B、2x-y-5=0
C、2x+y-7=0
D、x+2y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x
2
+cosx的所有正的极小值点从小到大排成的数列为{xn},则x1=(  )
A、
π
3
B、
3
C、
π
6
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={1,2},B={2,3,4},则A∩B=(  )
A、{2}
B、{1,2}
C、{1,3,4}
D、{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)的定义域为(a,b),y=f′(x)的图象如图,则函数y=f(x)在开区间(a,b)内取得极小值的点有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知球O的表面积为12π,一个正方体的各顶点都在该球面上,则这个正方体的体积为(  )
A、3
3
B、6
6
C、8
D、24

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lnx-
x-1
e-1
,则|f(x)|的极值点的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=[x2+(a-3)x-2a+3]•ex
(1)求f(x)的递增区间;
(2)a≥1时,求f(x)的最小值.

查看答案和解析>>

同步练习册答案