分析 (Ⅰ)把参数方程消去参数,可得曲线C的普通方程,再根据x=ρcosθ,y=ρsinθ,可得曲线C的极坐标方程.
(Ⅱ)利用极坐标方程求得P、Q的坐标,可得线段PQ的长.
解答 解:(Ⅰ)曲线C的参数方程为:$\left\{{\begin{array}{l}{x=1+\sqrt{7}cosθ}\\{y=\sqrt{7}sinθ}\end{array}}\right.(θ是参数)$,普通方程为(x-1)2+y2=7,
x=ρcosθ,y=ρsinθ代入,可得曲线C的极坐标方程为ρ2-2ρcosθ-6=0;
(Ⅱ)设P(ρ1,θ1),则有$\left\{\begin{array}{l}{{ρ}^{2}-2ρcosθ-6=0}\\{θ=\frac{π}{3}}\end{array}\right.$,解得ρ1=3,θ1=$\frac{π}{3}$,即P(3,$\frac{π}{3}$).
设Q(ρ2,θ2),则有$\left\{\begin{array}{l}{2ρsin(θ+\frac{π}{3})-\sqrt{3}=0}\\{θ=\frac{π}{3}(ρ>0)}\end{array}\right.$,解得ρ2=1,θ2=$\frac{π}{3}$,即Q(1,$\frac{π}{3}$),
所以|PQ|=|ρ1-ρ2|=2.
点评 本题主要考查参数方程与普通方程的互化,极坐标方程的应用以及极坐标的意义,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 增加了一项$\frac{1}{{2({k+1})}}$ | B. | 增加了两项$\frac{1}{2k+1}$和$\frac{1}{{2({k+1})}}$ | ||
| C. | 增加了B中两项,但又少了一项$\frac{1}{k+1}$ | D. | 增加了A中一项,但又少了一项$\frac{1}{k+1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{2}$ | B. | $2\sqrt{3}$ | C. | $6\sqrt{2}$ | D. | $6\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 14 | B. | 15 | C. | 16 | D. | 17 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-3,4] | B. | [-3,4) | C. | (-∞,-3)∪(3,+∞) | D. | (-∞,-3]∪(4,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com