精英家教网 > 高中数学 > 题目详情
1.若实数x,y满足不等式组$\left\{\begin{array}{l}{x≥0}\\{x-y+1≤0}\\{x+y-3≤0}\end{array}\right.$,则目标函数z=3x-y的最大值为1.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x≥0}\\{x-y+1≤0}\\{x+y-3≤0}\end{array}\right.$,作出可行域如图,

联立$\left\{\begin{array}{l}{x-y+1=0}\\{x+y-3=0}\end{array}\right.$,得A(1,2),
化目标函数z=3x-y为y=3x-z,
由图可知,当直线y=3x-z过A时,直线在y轴上的截距最小,z有最大值为3×1-2=1,
故答案为:1.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=x-alnx,当x>1时,f(x)>0恒成立,则实数a的取值范围是(  )
A.(1,+∞)B.(-∞,1)C.(e,+∞)D.(-∞,e)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系xOy中,曲线C的参数方程为:$\left\{{\begin{array}{l}{x=1+\sqrt{7}cosθ}\\{y=\sqrt{7}sinθ}\end{array}}\right.(θ是参数)$,以O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求曲线C的极坐标方程;
(Ⅱ)已知直线l1:$2ρsin(θ+\frac{π}{3})-\sqrt{3}=0$,射线${l_2}:θ=\frac{π}{3}(ρ>0)$与曲线C的交点为P,l2与直线l1的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.a>0是函数y=ax2+x+1在(0,+∞)上单调递增的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将A,B,C,D这4名同学从左至右随机地排成一排,则“A与B相邻且A与C之间恰好有1名同学”的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=AB=BC=2,且点O为AC中点.
(Ⅰ)证明:A1O⊥平面ABC;
(Ⅱ)求二面角A-A1B-C1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知△ABC中,A=$\frac{π}{6}$,B=$\frac{π}{4}$,a=1,则b等于(  )
A.2B.1C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}为等比数列,Sn为其前n项和,且${S_n}=2017×{2016^n}-2018t$,则t=(  )
A.$\frac{2015}{2016}$B.$\frac{2016}{2017}$C.$\frac{2017}{2018}$D.$\frac{2018}{2019}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.当0≤x≤$\frac{π}{2}$时,函数f(x)=sinx+$\sqrt{3}$cosx的(  )
A.最大值是$\sqrt{3}$,最小值是$\frac{1}{2}$B.最大值是$\sqrt{3}$,最小值是1
C.最大值是2,最小值是1D.最大值是2,最小值是$\frac{1}{2}$

查看答案和解析>>

同步练习册答案