精英家教网 > 高中数学 > 题目详情
13.已知△ABC中,A=$\frac{π}{6}$,B=$\frac{π}{4}$,a=1,则b等于(  )
A.2B.1C.$\sqrt{3}$D.$\sqrt{2}$

分析 由已知利用正弦定理即可计算得解.

解答 解:∵A=$\frac{π}{6}$,B=$\frac{π}{4}$,a=1,
∴由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$,可得:b=$\frac{asinB}{sinA}$=$\frac{1×\frac{\sqrt{2}}{2}}{\frac{1}{2}}$=$\sqrt{2}$.
故选:D.

点评 本题主要考查了正弦定理在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|x-a|.
(Ⅰ)若a=1,解不等式:f(x)≥4-|x-3|;
(Ⅱ)若f(x)≤1的解集为[0,2],$\frac{1}{m}+\frac{1}{2n}=a$(m>0,n>0),求mn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.定义在[0,+∞)上的函数f(x)满足:①当x∈[1,2)时,$f(x)=\frac{1}{2}-|{x-\frac{3}{2}}|$;②?x∈[0,+∞)都有f(2x)=2f(x).设关于x的函数F(x)=f(x)-a的零点从小到大依次为x1,x2,x3,…xn,…,若$a∈({\frac{1}{2},1})$,则x1+x2+…+x2n=6×(2n-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若实数x,y满足不等式组$\left\{\begin{array}{l}{x≥0}\\{x-y+1≤0}\\{x+y-3≤0}\end{array}\right.$,则目标函数z=3x-y的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.以直角坐标系xOy中,直线l:y=x,圆C:$\left\{\begin{array}{l}{x=-1+cosφ}\\{y=-2+sinφ}\end{array}\right.$(φ为参数),以坐标原点为为极点,x轴的正半轴为极轴建立极坐标系.
(Ⅰ)求直线l与圆C的极坐标方程;
(Ⅱ)设直线l与圆C的交点为M,N,求△CMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义域为{x|x≠0}的偶函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>-2f(x),若g(x)=x2f(x),则不等式g(x)<g(1)的解集是(  )
A.(-∞,1)B.(-∞,0)∪(0,1)C.(-1,1)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数f(x)=ax+xlnx在x=1处取得极值.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.不等式$\frac{x+3}{4-x}≥0$的解集为(  )
A.[-3,4]B.[-3,4)C.(-∞,-3)∪(3,+∞)D.(-∞,-3]∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.数列{an}满足log2an+1-log2an=1,且a1=1,则通项公式an=2n-1

查看答案和解析>>

同步练习册答案