精英家教网 > 高中数学 > 题目详情
18.已知定义域为{x|x≠0}的偶函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>-2f(x),若g(x)=x2f(x),则不等式g(x)<g(1)的解集是(  )
A.(-∞,1)B.(-∞,0)∪(0,1)C.(-1,1)D.(-1,0)∪(0,1)

分析 f(x)是定义域为{x|x≠0}的偶函数,可得:f(-x)=f(x),对任意正实数x满足xf′(x)>2f(-x),可得:xf′(x)+2f(x)>0,由g(x)=x2f(x),可得g′(x)>0.可得函数g(x)在(0,+∞)上单调递增.即可得出.

解答 解:∵f(x)是定义域为{x|x≠0}的偶函数,
∴f(-x)=f(x).
对任意正实数x满足xf′(x)>-2f(x),
∴xf′(x)+2f(x)>0,
∵g(x)=x2f(x),
∴g′(x)=2xf(x)+x2f′(x)>0.
∴函数g(x)在(0,+∞)上单调递增,
∴g(x)在(-∞,0)递减;
若不等式g(x)<g(1),
则|x|<1,x≠0,
解得:0<x<1或-1<x<0,
故选:D.

点评 本题考查了函数的奇偶性与单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.执行如图的程序框图,当n≥2,n∈Z时,fn(x)表示fn-1(x)的导函数,若输入函数f1(x)=sinx-cosx,则输出的函数fn(x)可化为(  )
A.$\sqrt{2}$sin(x+$\frac{π}{4}$)B.$\sqrt{2}$sin(x-$\frac{π}{4}$)C.-$\sqrt{2}$sin(x+$\frac{π}{4}$)D.-$\sqrt{2}$sin(x-$\frac{π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.a>0是函数y=ax2+x+1在(0,+∞)上单调递增的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=AB=BC=2,且点O为AC中点.
(Ⅰ)证明:A1O⊥平面ABC;
(Ⅱ)求二面角A-A1B-C1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知△ABC中,A=$\frac{π}{6}$,B=$\frac{π}{4}$,a=1,则b等于(  )
A.2B.1C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.全世界越来越关注环境保护问题,辽宁省某监测站点于2016年8月某日起连续x天监测空气质量指数(AQI),数据统计如下:
空气质量指数(μg/m30-5051-100101-150151-200201-250
空气质量等级空气优空气良轻度污染中度污染重度污染
天数2040y105
(Ⅰ)根据所给统计表和频率分布直方图中的信息求出x、y的值,并完成频率分布直方图;
(Ⅱ)在空气质量指数分别为51-100和151-200的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件A“两天空气都为良”发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}为等比数列,Sn为其前n项和,且${S_n}=2017×{2016^n}-2018t$,则t=(  )
A.$\frac{2015}{2016}$B.$\frac{2016}{2017}$C.$\frac{2017}{2018}$D.$\frac{2018}{2019}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.给出下列四个命题,则真命题的个数是(  )
①函数f(x)=lnx-2+x在区间(1,e)上存在零点
②若f′(x0)=0,则y=f(x)在x=x0处取得极值;
③已知p:?x∈R,使cosx=1,q:?x∈R,则x2-x+1>0,则“p∧(¬q)”为假命题
④在△ABC中,A<B是sinA<sinB的充分不必要条件.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知△ABC中,sinA+2sinBcosC=0,则tanA的最大值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案