3£®È«ÊÀ½çÔ½À´Ô½¹Ø×¢»·¾³±£»¤ÎÊÌ⣬ÁÉÄþʡij¼à²âÕ¾µãÓÚ2016Äê8ÔÂijÈÕÆðÁ¬ÐøxÌì¼à²â¿ÕÆøÖÊÁ¿Ö¸Êý£¨AQI£©£¬Êý¾Ýͳ¼ÆÈçÏ£º
¿ÕÆøÖÊÁ¿Ö¸Êý£¨¦Ìg/m3£©0-5051-100101-150151-200201-250
¿ÕÆøÖÊÁ¿µÈ¼¶¿ÕÆøÓÅ¿ÕÆøÁ¼Çá¶ÈÎÛȾÖжÈÎÛÈ¾ÖØ¶ÈÎÛȾ
ÌìÊý2040y105
£¨¢ñ£©¸ù¾ÝËù¸øÍ³¼Æ±íºÍƵÂÊ·Ö²¼Ö±·½Í¼ÖеÄÐÅÏ¢Çó³öx¡¢yµÄÖµ£¬²¢Íê³ÉƵÂÊ·Ö²¼Ö±·½Í¼£»
£¨¢ò£©ÔÚ¿ÕÆøÖÊÁ¿Ö¸Êý·Ö±ðΪ51-100ºÍ151-200µÄ¼à²âÊý¾ÝÖУ¬Ó÷ֲã³éÑùµÄ·½·¨³éÈ¡5Ì죬´ÓÖÐÈÎÒâѡȡ2Ì죬ÇóʼþA¡°Á½Ìì¿ÕÆø¶¼ÎªÁ¼¡±·¢ÉúµÄ¸ÅÂÊ£®

·ÖÎö £¨¢ñ£©ÓÉËù¸øÍ³¼Æ±íºÍƵÂÊ·Ö²¼Ö±·½Í¼ÖеÄÐÅÏ¢ÄÜÇó³öx¡¢yµÄÖµ£¬²¢Íê³ÉƵÂÊ·Ö²¼Ö±·½Í¼£®
£¨¢ò£©ÔÚ¿ÕÆøÖÊÁ¿Ö¸ÊýΪ51-100ºÍ151-200µÄ¼à²âÌìÊýÖзֱð³éÈ¡4ÌìºÍ1Ì죬ÔÚËù³éÈ¡µÄ5ÌìÖУ¬½«¿ÕÆøÖÊÁ¿Ö¸ÊýΪ51-100µÄ4Ìì·Ö±ð¼ÇΪa£¬b£¬c£¬d£»½«¿ÕÆøÎÛȾָÊýΪ151-200µÄ1Ìì¼ÇΪe£¬ÓÉ´ËÀûÓÃÁоٷ¨ÄÜÇó³öʼþA¡°Á½Ìì¿ÕÆø¶¼ÎªÁ¼¡±·¢ÉúµÄ¸ÅÂÊ£®

½â´ð £¨±¾Ð¡ÌâÂú·Ö12·Ö£©
½â£º£¨¢ñ£©¡ß$0.004¡Á50=\frac{20}{x}$£¬¡àx=100¡­£¨1·Ö£©
¡ß20+40+y+10+5=100£¬¡ày=25¡­£¨2·Ö£©
Íê³ÉƵÂÊ·Ö²¼Ö±·½Í¼£¬ÈçÏÂͼ£º
¡­£¨5·Ö£©
£¨¢ò£©ÔÚ¿ÕÆøÖÊÁ¿Ö¸ÊýΪ51-100ºÍ151-200µÄ¼à²âÌìÊýÖзֱð³éÈ¡4ÌìºÍ1Ì죬
ÔÚËù³éÈ¡µÄ5ÌìÖУ¬½«¿ÕÆøÖÊÁ¿Ö¸ÊýΪ51-100µÄ4Ìì·Ö±ð¼ÇΪa£¬b£¬c£¬d£»
½«¿ÕÆøÎÛȾָÊýΪ151-200µÄ1Ìì¼ÇΪe£¬¡­£¨6·Ö£©
´ÓÖÐÈÎÈ¡2ÌìµÄ»ù±¾Ê¼þ·Ö±ðΪ£¨a£¬b£©£¬£¨a£¬c£©£¬£¨a£¬d£©£¬£¨a£¬e£©£¬
£¨b£¬c£©£¬£¨b£¬d£©£¬£¨b£¬e£©£¬£¨c£¬d£©£¬£¨c£¬e£©£¬£¨d£¬e£©¹²10ÖÖ£¬¡­£¨8·Ö£©
ÆäÖÐʼþA¡°Á½Ìì¿ÕÆø¶¼ÎªÁ¼¡±°üº¬µÄ»ù±¾Ê¼þΪ£º
£¨a£¬b£©£¬£¨a£¬c£©£¬£¨a£¬d£©£¬£¨b£¬c£©£¬£¨b£¬d£©£¬£¨c£¬d£©¹²6ÖÖ£¬¡­£¨10·Ö£©
ËùÒÔʼþA¡°Á½Ì춼ΪÁ¼¡±·¢ÉúµÄ¸ÅÂÊÊÇP£¨A£©=$\frac{6}{10}$=$\frac{3}{5}$£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éƵÂÊ·Ö²¼Ö±·½Í¼µÄÓ¦Ó㬿¼²é¸ÅÂʵÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÁоٷ¨µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªf£¨x£©=$\sqrt{3}$sinx•cosx+cos2x£¬Èñ½Ç¡÷ABCµÄÈý¸ö½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚºÍµ¥µ÷µÝÔöÇø¼ä£»
£¨¢ò£©Èôf£¨C£©=1£¬Çóm=$\frac{{a}^{2}+{b}^{2}+{c}^{2}}{ab}$µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÃüÌâp£º¡°?x¡ÊN+£¬£¨$\frac{1}{2}$£©x¡Ü$\frac{1}{2}$¡±µÄ·ñ¶¨Îª£¨¡¡¡¡£©
A£®?x¡ÊN+£¬£¨$\frac{1}{2}$£©x£¾$\frac{1}{2}$B£®?x∉N+£¬£¨$\frac{1}{2}$£©x£¾$\frac{1}{2}$C£®?x∉N+£¬£¨$\frac{1}{2}$£©x£¾$\frac{1}{2}$D£®?x¡ÊN+£¬£¨$\frac{1}{2}$£©x£¾$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªÆ½ÃæÏòÁ¿$\overrightarrow{a}$=£¨k£¬3£©£¬$\overrightarrow{b}$=£¨1£¬4£©£¬Èô$\overrightarrow{a}$¡Í$\overrightarrow{b}$£¬ÔòʵÊýkΪ£¨¡¡¡¡£©
A£®-12B£®12C£®$\frac{4}{3}$D£®$\frac{3}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖª¶¨ÒåÓòΪ{x|x¡Ù0}µÄżº¯Êýf£¨x£©£¬Æäµ¼º¯ÊýΪf¡ä£¨x£©£¬¶ÔÈÎÒâÕýʵÊýxÂú×ãxf¡ä£¨x£©£¾-2f£¨x£©£¬Èôg£¨x£©=x2f£¨x£©£¬Ôò²»µÈʽg£¨x£©£¼g£¨1£©µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬1£©B£®£¨-¡Þ£¬0£©¡È£¨0£¬1£©C£®£¨-1£¬1£©D£®£¨-1£¬0£©¡È£¨0£¬1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªÍÖÔ²$\frac{x^2}{16}+\frac{y^2}{9}=1$£¬ÔòÒÔµã$£¨2£¬\frac{3}{2}£©$ΪÖеãµÄÏÒËùÔÚµÄÖ±Ïß·½³ÌΪ£¨¡¡¡¡£©
A£®8x-6y-7=0B£®3x+4y=0C£®3x+4y-12=0D£®6x+8y-25=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÈôµãPÊÇ·½³Ì$\sqrt{{{£¨x-5£©}^2}+{y^2}}-\sqrt{{{£¨x+5£©}^2}+{y^2}}=6$Ëù±íʾµÄÇúÏßÉϵĵ㣬ͬʱPÓÖÊÇÖ±Ïßy=4Éϵĵ㣬ÔòµãPµÄºá×ø±êΪ$-3\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬sinC-sinA£¨cosB+$\frac{{\sqrt{3}}}{3}sinB$£©=0
£¨1£©ÇóA£»
£¨2£©Èô$a=4\sqrt{3}$£¬Çób+cµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÇóÊʺÏÏÂÁÐÌõ¼þµÄÍÖÔ²µÄ±ê×¼·½³Ì
£¨1£©½¹µãÔÚxÖáÉÏ£¬½¹¾àΪ4£¬²¢ÇÒ¾­¹ýµãP£¨3£¬$-2\sqrt{6}$£©
£¨2£©½¹¾àΪ8£¬ÀëÐÄÂÊΪ0.8£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸