精英家教网 > 高中数学 > 题目详情
16.将A,B,C,D这4名同学从左至右随机地排成一排,则“A与B相邻且A与C之间恰好有1名同学”的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{8}$

分析 先求出基本事件总数n=${A}_{4}^{4}$,再利用列举法求出“A与B相邻且A与C之间恰好有1名同学”包含的基本事件个数,由此能求出“A与B相邻且A与C之间恰好有1名同学”的概率.

解答 解:∵将A,B,C,D这4名同学从左至右随机地排成一排,
基本事件总数n=${A}_{4}^{4}$=4×3×2×1=24,
“A与B相邻且A与C之间恰好有1名同学”包含的基本事件有:
ABCD,CBAD,CDAB,DABC,DCBA,BADC,共6个,
∴“A与B相邻且A与C之间恰好有1名同学”的概率p=$\frac{6}{24}=\frac{1}{4}$.
故选:B.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若x0是方程lnx+x-3=0的实数解,则x0属于区间(  )
A.(1,1.5)B.(1.5,2)C.(2,2.5)D.(2.5,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,内角A,B,C的对边分别为a,b,c,若bsinB-asinC=0
(1)求证:a,b,c成等比数列;
(2)若a=1,c=2,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.定义在[0,+∞)上的函数f(x)满足:①当x∈[1,2)时,$f(x)=\frac{1}{2}-|{x-\frac{3}{2}}|$;②?x∈[0,+∞)都有f(2x)=2f(x).设关于x的函数F(x)=f(x)-a的零点从小到大依次为x1,x2,x3,…xn,…,若$a∈({\frac{1}{2},1})$,则x1+x2+…+x2n=6×(2n-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|2x2+x-3=0},集合B={i|i2≥4}},∁RC={-1,1,$\frac{3}{2}$},则A∩BU∁RC=(  )
A.{1,-1,$\frac{3}{2}$}B.{-2,1,-$\frac{3}{2}$,-1}C.{1}D.{2,1,-1,$\frac{3}{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若实数x,y满足不等式组$\left\{\begin{array}{l}{x≥0}\\{x-y+1≤0}\\{x+y-3≤0}\end{array}\right.$,则目标函数z=3x-y的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.以直角坐标系xOy中,直线l:y=x,圆C:$\left\{\begin{array}{l}{x=-1+cosφ}\\{y=-2+sinφ}\end{array}\right.$(φ为参数),以坐标原点为为极点,x轴的正半轴为极轴建立极坐标系.
(Ⅰ)求直线l与圆C的极坐标方程;
(Ⅱ)设直线l与圆C的交点为M,N,求△CMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数f(x)=ax+xlnx在x=1处取得极值.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.化简$\sqrt{1-2sin1cos1}$的结果为(  )
A.sin1-cos1B.cos1-sin1C.sin1+cos1D.-sin1-cos1

查看答案和解析>>

同步练习册答案