精英家教网 > 高中数学 > 题目详情
6.若x0是方程lnx+x-3=0的实数解,则x0属于区间(  )
A.(1,1.5)B.(1.5,2)C.(2,2.5)D.(2.5,3)

分析 由方程lnx+x=3,设对应函数f(x)=lnx+x-3,然后根据根的存在性定理进行判断即可.

解答 解:∵方程lnx+x-3=0,
∴设对应函数f(x)=lnx+x-3,
∵f(2)=ln2+2-3=ln2-1<0,f(2.5)=ln2.5+2.5-3=ln2.5-0.5lne>0,
∴根据根的存在性定理可知在区间(2,2.5)内函数存在零点,
即x0属于区间(2,2.5).
故选:C.

点评 本题主要考查函数零点的判断,利用根的存在性定理是解决本题的关键,将方程转化为函数即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.如图一个水平放置的三角形的斜二测直观图是等腰直角三角形A′B′O′,若O′B′=B′A′=1,那么原△ABO的面积是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设p:x<4,q:1<x<4,则p是q成立的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$\vec a=({1,3})$,$\vec b=({-2,k})$,且$({\vec a+2\vec b})∥({3\vec a-\vec b})$,则实数k=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直线l的参数方程为$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\sqrt{3}+\sqrt{3}t\end{array}\right.$(t为参数)以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C的方程为$sinθ-\sqrt{3}ρ{cos^2}θ=0$.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)写出直线l与曲线C交点的一个极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=x-alnx,当x>1时,f(x)>0恒成立,则实数a的取值范围是(  )
A.(1,+∞)B.(-∞,1)C.(e,+∞)D.(-∞,e)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,它是形成雾霾的原因之一.PM2.5日均值越小,空气质量越好.2012年2月29日,国家环保部发布的《环境空气质量标准》见表:
PM2.5日均值k(微克)空气质量等级
k≤35一级
35<k≤75二级
k>75超标
针对日趋严重的雾霾情况,各地环保部门做了积极的治理.马鞍山市环保局从市区2015年11月~12月和2016年11月~12月的PM2.5检测数据中各随机抽取9天的数据来分析治理效果.样本数据如茎叶图所示(十位为茎,个位为叶)
(Ⅰ)分别求两年样本数据的中位数和平均值,并以此推断2016年11月~12月的空气质量是否比2015年同期有所提高?
(Ⅱ)在2015年的9个样本数据中随机抽取两天的数据,求这两天空气质量均超标的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合P={x|-1≤x≤1},M={a},若P∩M=∅,则a取值范围是(  )
A.(-∞,-1]B.[1,+∞)C.[-1,1]D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将A,B,C,D这4名同学从左至右随机地排成一排,则“A与B相邻且A与C之间恰好有1名同学”的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{8}$

查看答案和解析>>

同步练习册答案