1£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\sqrt{3}+\sqrt{3}t\end{array}\right.$£¨tΪ²ÎÊý£©ÒÔ×ø±êÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ·½³ÌΪ$sin¦È-\sqrt{3}¦Ñ{cos^2}¦È=0$£®
£¨¢ñ£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©Ð´³öÖ±ÏßlÓëÇúÏßC½»µãµÄÒ»¸ö¼«×ø±ê£®

·ÖÎö £¨¢ñ£©ÀûÓü«×ø±êÓëÖ±½Ç×ø±ê»¥»¯·½·¨£¬ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©½«$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\sqrt{3}+\sqrt{3}t\end{array}\right.$£¬´úÈë$y-\sqrt{3}{x^2}=0$µÃ£¬$\sqrt{3}+\sqrt{3}t-\sqrt{3}{£¨{1+\frac{1}{2}t}£©^2}=0$£¬Çó³ö½»µã×ø±ê£¬¼´¿ÉÖ±ÏßlÓëÇúÏßC½»µãµÄÒ»¸ö¼«×ø±ê£®

½â´ð ½â£º£¨¢ñ£©¡ß$sin¦È-\sqrt{3}¦Ñ{cos^2}¦È=0$£¬¡à$¦Ñsin¦È-\sqrt{3}{¦Ñ^2}{cos^2}¦È=0$£¬
¼´$y-\sqrt{3}{x^2}=0$£»
£¨¢ò£©½«$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\sqrt{3}+\sqrt{3}t\end{array}\right.$£¬´úÈë$y-\sqrt{3}{x^2}=0$µÃ£¬$\sqrt{3}+\sqrt{3}t-\sqrt{3}{£¨{1+\frac{1}{2}t}£©^2}=0$£¬¼´t=0£¬
´Ó¶ø£¬½»µã×ø±êΪ$£¨{1£¬\sqrt{3}}£©$£¬
ËùÒÔ£¬½»µãµÄÒ»¸ö¼«×ø±êΪ$£¨{2£¬\frac{¦Ð}{3}}£©$£®

µãÆÀ ±¾Ì⿼²é¼«×ø±êÓëÖ±½Ç×ø±ê»¥»¯£¬¿¼²é²ÎÊý·½³ÌµÄÔËÓ㬱Ƚϻù´¡£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÇؾÅÉØÊÇÎÒ¹úÄÏËÎʱÆÚµÄÊýѧ¼Ò£¬ÆÕÖÝ£¨ÏÖËÄ´¨Ê¡°²ÔÀÏØ£©ÈË£¬ËûÔÚËùÖøµÄ¡¶ÊýÊé¾ÅÕ¡·ÖÐÌá³öµÄ¶àÏîʽÇóÖµµÄÇØ¾ÅÉØËã·¨£¬ÖÁ½ñÈÔÊDZȽÏÏȽøµÄËã·¨£¬ÈçͼËùʾµÄ³ÌÐò¿òͼ¸ø³öÁËÀûÓÃÇØ¾ÅÉØËã·¨Çóij¶àÏîʽֵµÄÒ»¸öʵÀý£¬ÈôÊäÈëxµÄֵΪ2£¬ÔòÊä³övµÄֵΪ£¨¡¡¡¡£©
A£®210-1B£®210C£®310-1D£®310

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®¶¨ÒåÔÚRÉϵÄżº¯Êýf£¨x£©µÄµ¼º¯ÊýΪf'£¨x£©£¬Èô¶ÔÈÎÒâµÄʵÊýx£¬¶¼ÓÐ2f£¨x£©+xf'£¨x£©£¼2ºã³ÉÁ¢£¬Ôòʹx2f£¨x£©-4f£¨2£©£¼x2-4³ÉÁ¢µÄʵÊýxµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬-2£©¡È£¨2£¬+¡Þ£©B£®£¨-2£¬0£©¡È£¨0£¬2£©C£®{x|x¡Ù¡À2}D£®£¨-2£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÔÚÈçͼËùʾµÄÕý·½ÐÎÖÐËæ»úͶÖÀ10000¸öµã£¬ÔòÂäÈëÒõÓ°²¿·Ö£¨ÇúÏßCµÄ·½³ÌΪx2-y=0£©µÄµãµÄ¸öÊýµÄ¹À¼ÆÖµÎª£¨¡¡¡¡£©
A£®5000B£®6667C£®7500D£®7854

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒÂú×ãS4=24£¬S7=63£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Èô${b_n}={2^{a_n}}+{£¨{-1}£©^n}•{a_n}$£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Èôx0ÊÇ·½³Ìlnx+x-3=0µÄʵÊý½â£¬Ôòx0ÊôÓÚÇø¼ä£¨¡¡¡¡£©
A£®£¨1£¬1.5£©B£®£¨1.5£¬2£©C£®£¨2£¬2.5£©D£®£¨2.5£¬3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªº¯Êý$f£¨x£©=\left\{\begin{array}{l}{3^{|x-1|}}£¬x£¾0\\-{x^2}-2x+1£¬x¡Ü0\end{array}\right.$£¬Èô¹ØÓÚxµÄ·½³Ìf2£¨x£©+£¨a-1£©f£¨x£©-a=0ÓÐ7¸ö²»µÈµÄʵÊý¸ù£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[1£¬2]B£®£¨1£¬2£©C£®£¨-2£¬-1£©D£®[-2£¬-1]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Éèa=${¡Ò}_{0}^{2}$£¨2x+1£©dx£¬Ôò¶þÏîʽ£¨x-$\frac{a}{2x}$£©6Õ¹¿ªÊ½ÖÐx2ÏîµÄϵÊýΪ135£¨ÓÃÊý×Ö×÷´ð£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖª¼¯ºÏA={x|2x2+x-3=0}£¬¼¯ºÏB={i|i2¡Ý4}}£¬∁RC={-1£¬1£¬$\frac{3}{2}$}£¬ÔòA¡ÉBU∁RC=£¨¡¡¡¡£©
A£®{1£¬-1£¬$\frac{3}{2}$}B£®{-2£¬1£¬-$\frac{3}{2}$£¬-1}C£®{1}D£®{2£¬1£¬-1£¬$\frac{3}{2}$}

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸