精英家教网 > 高中数学 > 题目详情
16.已知等差数列{an}的前n项和为Sn,且满足S4=24,S7=63.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若${b_n}={2^{a_n}}+{({-1})^n}•{a_n}$,求数列{bn}的前n项和Tn

分析 (I)利用等差数列的求和公式及其通项公式即可得出.
(II)通过分类讨论,利用等差数列与等比数列的求和公式即可得出.

解答 解:(Ⅰ)因为{an}为等差数列,
所以$\left\{\begin{array}{l}{S_4}=4{a_1}+\frac{4×3}{2}d=24\\{S_7}=7{a_1}+\frac{7×6}{2}d=63\end{array}\right.⇒\left\{\begin{array}{l}{a_1}=3\\ d=2\end{array}\right.⇒{a_n}=2n+1$.
(Ⅱ)∵${b_n}={2^{a_n}}+{({-1})^n}•{a_n}={2^{2n+1}}+{({-1})^n}•({2n+1})=2×{4^n}+{({-1})^n}•({2n+1})$
∴${T_n}=2({{4^1}+{4^2}+…+{4^n}})+[{-3+5-7+9-…+{{({-1})}^n}({2n+1})}]=\frac{{8({{4^n}-1})}}{3}+{G_n}$,
当n=2k(k∈N*)时,${G_n}=2×\frac{n}{2}=n$,∴${T_n}=\frac{{8({{4^n}-1})}}{3}+n$
当n=2k-1(k∈N*)时,${G_n}=2×\frac{n-1}{2}-({2n+1})=-n-2$,
∴${T_n}=\frac{{8({{4^n}-1})}}{3}-n-2$,∴${T_n}=\left\{\begin{array}{l}\frac{{8({{4^n}-1})}}{3}+n({n=2k,k∈{N^*}})\\ \frac{{8({{4^n}-1})}}{3}-n-2({n=2k-1,k∈{N^*}})\end{array}\right.$.

点评 本题考查了等差数列与等比数列的通项公式与求和公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.函数f(x)的定义域为R,周期为1,当0≤x<1时f(x)=x,若函数f(x)的图象与$g(x)=2{x^2}+\sqrt{k}$的图象只有一个交点,则实数k的取值范围是(  )
A.$[\frac{1}{64},1]$B.$[\frac{1}{8},1]$C.$(\frac{1}{64},1)$D.$(\frac{1}{8},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某几何体的三视图如图所示,图中的四边形都是边长为1的正方体,两条虚线互相垂直,则该几何体的体积是(  )
A.$\frac{2}{3}$B.$\frac{5}{6}$C.$1-\frac{π}{6}$D.$1-\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.数列{an}的前n项和为Sn,Sn=2an-n(n∈N*).
(1)求证:数列{an+1}成等比数列;
(2)求数列{an}的通项公式;
(3)数列{an}中是否存在连续三项可以构成等差数列?若存在,请求出一组适合条件的三项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知(ax+b)6的展开式中x4项的系数与x5项的系数分别为135与-18,则(ax+b)6展开式所有项系数之和为(  )
A.-1B.1C.32D.64

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直线l的参数方程为$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\sqrt{3}+\sqrt{3}t\end{array}\right.$(t为参数)以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C的方程为$sinθ-\sqrt{3}ρ{cos^2}θ=0$.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)写出直线l与曲线C交点的一个极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.从正五边形的5个顶点中随机选择3个顶点,则以它们作为顶点的三角形是锐角三角形的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法正确的是(  )
A.“sinα=$\frac{3}{5}$”是“cos2α=$\frac{7}{25}$”的必要不充分条件
B.已知命题p:?x∈R,使2x>3x;命题q:?x∈(0,+∞),都有$\frac{1}{{x}^{2}}$<$\frac{1}{{x}^{3}}$,则p∧(¬q)是真命题
C.命题“若xy=0,则x=0或y=0”的否命题是“若xy≠0,则x≠0或y≠0”
D.从匀速传递的生产流水线上,质检员每隔5分钟从中抽取一件产品进行某项指标检测,这是分成抽样

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表:
组别PM2.5浓度
(微克/立方米)
频数(天)频率
 第一组(0,25]30.15
第二组(25,50]120.6
第三组(50,75]30.15
第四组(75,100]20.1
(1)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.
①求图4中a的值;
②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.
(2)将频率视为概率,对于2016年的某3天,记这3天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案