| 组别 | PM2.5浓度 (微克/立方米) | 频数(天) | 频率 |
| 第一组 | (0,25] | 3 | 0.15 |
| 第二组 | (25,50] | 12 | 0.6 |
| 第三组 | (50,75] | 3 | 0.15 |
| 第四组 | (75,100] | 2 | 0.1 |
分析 (1)①a=0.004.②2016年该居民区PM2.5的年平均浓度=12.5×0.15+37.5×0.6+62.5×0.15+87.5×0.1,与35比较即可判断出结论.
(2)由题意可得:PM2.5的24小时平均浓度符合环境空气质量标准的概率为0.9,X的可能取值为0,1,2,3.P(X=k)=${∁}_{3}^{k}(0.1)^{3-k}(0.9)^{k}$.
解答 解:(1)①a=0.004.②2016年该居民区PM2.5的年平均浓度=12.5×0.15+37.5×0.6+62.5×0.15+87.5×0.1=42.5(微克/立方米),∵42.5>35,∴2016年该居民区PM2.5的年平均浓度不符合环境空气质量标准,故该居民取的环境需要改进.
(2)由题意可得:PM2.5的24小时平均浓度符合环境空气质量标准的概率为0.9,X的可能取值为0,1,2,3.P(X=k)=${∁}_{3}^{k}(0.1)^{3-k}(0.9)^{k}$,可得P(X=0)=0.001,P(X=1)=0.027,P(X=2)=0.243,
P(X=3)=0.729.
X的分布列为:
| X | 0 | 1 | 2 | 3 |
| P | 0.001 | 0.027 | 0.243 | 0.729 |
点评 本题考查了频率分布直方图的性质及其应用、二项分布列的概率计算公式及其数学期望,考查推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=±\frac{{\sqrt{2}}}{2}x$ | B. | $y=±\sqrt{2}x$ | C. | y=±2x | D. | $y=±\frac{1}{2}x$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,-1,$\frac{3}{2}$} | B. | {-2,1,-$\frac{3}{2}$,-1} | C. | {1} | D. | {2,1,-1,$\frac{3}{2}$} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | 1 | C. | $\sqrt{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4π | B. | 8π | C. | 16π | D. | 32π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com