精英家教网 > 高中数学 > 题目详情
14.已知集合A={-2,0,2},B={x|2x2-2x-3≤1},则A∩B=(  )
A.{0}B.{2}C.{0,2}D.{-2,0}

分析 先分别求出集合A和B,由此利用交集性质能求出A∩B.

解答 解:∵集合A={-2,0,2},
B={x|2x2-2x-3≤1}={x|-1<x<3},
∴A∩B={0,2}.
故选:C.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.数列{an}的前n项和为Sn,Sn=2an-n(n∈N*).
(1)求证:数列{an+1}成等比数列;
(2)求数列{an}的通项公式;
(3)数列{an}中是否存在连续三项可以构成等差数列?若存在,请求出一组适合条件的三项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法正确的是(  )
A.“sinα=$\frac{3}{5}$”是“cos2α=$\frac{7}{25}$”的必要不充分条件
B.已知命题p:?x∈R,使2x>3x;命题q:?x∈(0,+∞),都有$\frac{1}{{x}^{2}}$<$\frac{1}{{x}^{3}}$,则p∧(¬q)是真命题
C.命题“若xy=0,则x=0或y=0”的否命题是“若xy≠0,则x≠0或y≠0”
D.从匀速传递的生产流水线上,质检员每隔5分钟从中抽取一件产品进行某项指标检测,这是分成抽样

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知抛物线C:y2=8x的焦点为F,P为C的准线上一点,Q(在第一象限)是直线PF与C的一个交点,若$\overrightarrow{PQ}=\sqrt{2}\overrightarrow{QF}$,则QF的长为(  )
A.$6-4\sqrt{2}$B.$8-4\sqrt{2}$C.$8+4\sqrt{2}$D.$8±4\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在三棱柱ABC-A1B1C1中,△ABC是边长为2的正三角形,侧面BB1C1C为矩形,D,E,F分别是线段BB1,AC1,A1C1的中点.
(1)求证:DE∥平面A1B1C1
(2)若平面ABC⊥平面BB1C1C,BB1=4,求三棱锥C-AC1D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在平面直角坐标系xoy中,双曲线${C_1}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的渐近线与抛物线${C_2}:{y^2}=2px({p>0})$交于点O,A,B,若△OAB的垂心为C2的焦点,则C1的离心率为(  )
A.$\frac{3}{2}$B.$\sqrt{5}$C.$\frac{{3\sqrt{5}}}{5}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表:
组别PM2.5浓度
(微克/立方米)
频数(天)频率
 第一组(0,25]30.15
第二组(25,50]120.6
第三组(50,75]30.15
第四组(75,100]20.1
(1)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.
①求图4中a的值;
②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.
(2)将频率视为概率,对于2016年的某3天,记这3天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设函数f(x)=g($\frac{x}{2}$)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为9x+y-1=0,则曲线y=f(x)在点(2,f(2))处的切线方程为x+2y+6=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.曲线f(x)=$\frac{lnx}{x}$在x=e处的切线方程为(  )
A.y=eB.y=x-e+$\frac{1}{e}$C.y=xD.y=$\frac{1}{e}$

查看答案和解析>>

同步练习册答案