分析 由题意求得g(1))=-8,g′(1)=-9,对f(x)求导,注意复合函数的导数,求出f(2),x=2处切线的斜率,由点斜式方程即可得到所求方程.
解答 解:曲线y=g(x)在点(1,g(1))处的切线方程为9x+y-1=0,
可得g(1)=-8,g′(1)=-9,
函数f(x)=g($\frac{x}{2}$)+x2的导数为f′(x)=$\frac{1}{2}$g′($\frac{x}{2}$)+2x,
即有f(2)=g(1)+4=-8+4=-4,
f′(2)=$\frac{1}{2}$g′(1)+4=4-$\frac{9}{2}$=-$\frac{1}{2}$,
则曲线y=f(x)在点(2,f(2))处的切线方程为y-(-4)=-$\frac{1}{2}$(x-2),
即为x+2y+6=0.
故答案为:x+2y+6=0.
点评 本题考查导数的运用:求切线的方程,注意运用复合函数的导数,直线的点斜式方程,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [1,2] | B. | (1,2) | C. | (-2,-1) | D. | [-2,-1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,-1,$\frac{3}{2}$} | B. | {-2,1,-$\frac{3}{2}$,-1} | C. | {1} | D. | {2,1,-1,$\frac{3}{2}$} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | 1 | C. | $\sqrt{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4π | B. | 8π | C. | 16π | D. | 32π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,5) | B. | (-0.5,0.2) | C. | (-2,1) | D. | (-0.5,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,5) | B. | (-∞,5] | C. | (5,+∞) | D. | [5,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com