精英家教网 > 高中数学 > 题目详情
13.已知函数$f(x)=\left\{\begin{array}{l}{3^{|x-1|}},x>0\\-{x^2}-2x+1,x≤0\end{array}\right.$,若关于x的方程f2(x)+(a-1)f(x)-a=0有7个不等的实数根,则实数a的取值范围是(  )
A.[1,2]B.(1,2)C.(-2,-1)D.[-2,-1]

分析 画出函数的图象,利用函数的图象,判断f(x)的范围,然后利用二次函数的性质求解a的范围.

解答 解:函数$f(x)=\left\{\begin{array}{l}{3^{|x-1|}},x>0\\-{x^2}-2x+1,x≤0\end{array}\right.$的图象如图:
关于f2(x)+(a-1)f(x)-a=0有7个不等的实数根,
即[f(x)+a][f(x)-1]=0有7个不等的实数根,f(x)=1有3个不等的实数根,
∴f(x)=-a必须有4个不相等的实数根,由函数f(x)图象
可知-a∈(1,2),∴a∈(-2,-1).
故选:C.

点评 本题考查函数与方程的应用,函数的零点个数的判断与应用,考查数形结合以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知x>1,比较x3+6x与x2+6的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.数列{an}的前n项和为Sn,Sn=2an-n(n∈N*).
(1)求证:数列{an+1}成等比数列;
(2)求数列{an}的通项公式;
(3)数列{an}中是否存在连续三项可以构成等差数列?若存在,请求出一组适合条件的三项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直线l的参数方程为$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\sqrt{3}+\sqrt{3}t\end{array}\right.$(t为参数)以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C的方程为$sinθ-\sqrt{3}ρ{cos^2}θ=0$.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)写出直线l与曲线C交点的一个极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.从正五边形的5个顶点中随机选择3个顶点,则以它们作为顶点的三角形是锐角三角形的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,它是形成雾霾的原因之一.PM2.5日均值越小,空气质量越好.2012年2月29日,国家环保部发布的《环境空气质量标准》见表:
PM2.5日均值k(微克)空气质量等级
k≤35一级
35<k≤75二级
k>75超标
针对日趋严重的雾霾情况,各地环保部门做了积极的治理.马鞍山市环保局从市区2015年11月~12月和2016年11月~12月的PM2.5检测数据中各随机抽取9天的数据来分析治理效果.样本数据如茎叶图所示(十位为茎,个位为叶)
(Ⅰ)分别求两年样本数据的中位数和平均值,并以此推断2016年11月~12月的空气质量是否比2015年同期有所提高?
(Ⅱ)在2015年的9个样本数据中随机抽取两天的数据,求这两天空气质量均超标的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法正确的是(  )
A.“sinα=$\frac{3}{5}$”是“cos2α=$\frac{7}{25}$”的必要不充分条件
B.已知命题p:?x∈R,使2x>3x;命题q:?x∈(0,+∞),都有$\frac{1}{{x}^{2}}$<$\frac{1}{{x}^{3}}$,则p∧(¬q)是真命题
C.命题“若xy=0,则x=0或y=0”的否命题是“若xy≠0,则x≠0或y≠0”
D.从匀速传递的生产流水线上,质检员每隔5分钟从中抽取一件产品进行某项指标检测,这是分成抽样

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知抛物线C:y2=8x的焦点为F,P为C的准线上一点,Q(在第一象限)是直线PF与C的一个交点,若$\overrightarrow{PQ}=\sqrt{2}\overrightarrow{QF}$,则QF的长为(  )
A.$6-4\sqrt{2}$B.$8-4\sqrt{2}$C.$8+4\sqrt{2}$D.$8±4\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设函数f(x)=g($\frac{x}{2}$)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为9x+y-1=0,则曲线y=f(x)在点(2,f(2))处的切线方程为x+2y+6=0.

查看答案和解析>>

同步练习册答案