精英家教网 > 高中数学 > 题目详情
12.化简$\sqrt{1-2sin1cos1}$的结果为(  )
A.sin1-cos1B.cos1-sin1C.sin1+cos1D.-sin1-cos1

分析 根据同角三角函数关系式化简即可.

解答 解:∵sin21+cos21=1,
那么:$\sqrt{1-2sin1cos1}=\sqrt{sin^21+cos^21-2sin1cos1}$=|sin1-cos1|.
∵$\frac{π}{4}<1<\frac{π}{2}$,
∴sin1>cos1.
∴|sin1-cos1|=sin1-cos1.
故选A.

点评 本题主要考察了同角三角函数关系式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.将A,B,C,D这4名同学从左至右随机地排成一排,则“A与B相邻且A与C之间恰好有1名同学”的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,内角A、B、C的对边分别是a,b,c,且A、B、C成等差数列
(1)若$b=\sqrt{7},c=2$,求△ABC的面积
(2)若sinA、sinB、sinC成等比数列,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax3+bx(x∈R)
(1)若函数f(x)的图象在x=3处的切线与直线24x-y+1=0平行,函数f(x)在x=1处取得极值,求f(x)的解析式和单调区间;
(2)若a=1,且函数f(x)在区间[-1,1]上是减函数,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}+1,x<0}\\{|\frac{1}{2}{x}^{2}-2x+1|,x≥0}\end{array}\right.$,方程f2(x)-af(x)+b=0(b≠0)有六个不同的实数解,则3a+b的取值范围是(  )
A.[6,11]B.[3,11]C.(6,11)D.(3,11)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.当0≤x≤$\frac{π}{2}$时,函数f(x)=sinx+$\sqrt{3}$cosx的(  )
A.最大值是$\sqrt{3}$,最小值是$\frac{1}{2}$B.最大值是$\sqrt{3}$,最小值是1
C.最大值是2,最小值是1D.最大值是2,最小值是$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系中,已知向量$\overrightarrow{m}$=($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$),$\overrightarrow{n}$=(cosx,sinx),$x∈(0,\frac{π}{2})$.
(1)若$\overrightarrow{m}⊥\overrightarrow{n}$,求tanx的值;   
(2)若$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为$\frac{π}{3}$,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.对于R上可导函数f(x),若满足(x-2)f′(x)>0,则必有(  )
A.f(1)+f(3)<2f(2)B.f(1)+f(3)>2f(2)C.f(1)+f(3)>f(0)+f(4)D.f(1)+f(0)<f(3)+f(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,曲线Γ由曲线C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0,y≤0)和曲线C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0,y>0)组成,其中点F1
F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点,
(Ⅰ)若F2(2,0),F3(-6,0),求曲线Γ的方程;
(Ⅱ)如图,作直线l平行于曲线C2的渐近线,交曲线C1于点A、B,求证:弦AB的中点M必在曲线C2的另一条渐近线上;
(Ⅲ)对于(Ⅰ)中的曲线Γ,若直线l1过点F4交曲线C1于点C、D,求△CDF1面积的最大值.

查看答案和解析>>

同步练习册答案