2£®Èçͼ£¬ÇúÏߦ£ÓÉÇúÏßC1£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£¬y¡Ü0£©ºÍÇúÏßC2£º$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1£¨a£¾0£¬b£¾0£¬y£¾0£©×é³É£¬ÆäÖеãF1£¬
F2ΪÇúÏßC1ËùÔÚÔ²×¶ÇúÏߵĽ¹µã£¬µãF3£¬F4ΪÇúÏßC2ËùÔÚÔ²×¶ÇúÏߵĽ¹µã£¬
£¨¢ñ£©ÈôF2£¨2£¬0£©£¬F3£¨-6£¬0£©£¬ÇóÇúÏߦ£µÄ·½³Ì£»
£¨¢ò£©Èçͼ£¬×÷Ö±ÏßlƽÐÐÓÚÇúÏßC2µÄ½¥½üÏߣ¬½»ÇúÏßC1ÓÚµãA¡¢B£¬ÇóÖ¤£ºÏÒABµÄÖеãM±ØÔÚÇúÏßC2µÄÁíÒ»Ìõ½¥½üÏßÉÏ£»
£¨¢ó£©¶ÔÓÚ£¨¢ñ£©ÖеÄÇúÏߦ££¬ÈôÖ±Ïßl1¹ýµãF4½»ÇúÏßC1ÓÚµãC¡¢D£¬Çó¡÷CDF1Ãæ»ýµÄ×î´óÖµ£®

·ÖÎö £¨¢ñ£©ÓÉF2£¨2£¬0£©£¬F3£¨-6£¬0£©£¬¿ÉµÃ£©$\left\{\begin{array}{l}{{a}^{2}+{b}^{2}=36}\\{{a}^{2}-{b}^{2}=4}\end{array}\right.$⇒a
£¨¢ò£©ÇúÏßC2µÄ½¥½üÏßΪ¡À$\frac{b}{a}x$£¬Èçͼ£¬ÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬M£¨x0£¬y0£©£¬ÉèÖ±Ïßl£ºy=$\frac{b}{a}£¨x-m£©$£¬ÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª2x2-2mx+£¨m2-a2£©=0£¬ÀûÓá÷£¾0£¬¸ùÓëϵÊýµÄ¹ØÏµ¡¢Öеã×ø±ê¹«Ê½£¬Ö»ÒªÖ¤Ã÷y0=-$\frac{b}{a}{x}_{0}$¼´¿É£®
£¨¢ó£©ÉèÖ±Ïßl1µÄ·½³ÌΪx=ny+6£¨n£¾0£©£®ÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃ£¨5+4n2£©y2+48ny+64=0£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¡¢ÏÒ³¤¹«Ê½¡¢Èý½ÇÐεÄÃæ»ý¼ÆË㹫ʽ¡¢»ù±¾²»µÈʽµÄÐÔÖʼ´¿ÉµÃ³ö£®

½â´ð ½â£º£¨¢ñ£©¡ßF2£¨2£¬0£©£¬F3£¨-6£¬0£©£¬¡à$\left\{\begin{array}{l}{{a}^{2}+{b}^{2}=36}\\{{a}^{2}-{b}^{2}=4}\end{array}\right.$⇒a$\left\{\begin{array}{l}{{a}^{2}=20}\\{{b}^{2}=16}\end{array}\right.$
ÔòÇúÏߦ£µÄ·½³ÌΪ$\frac{{x}^{2}}{20}+\frac{{y}^{2}}{16}=1£¨y¡Ü0£©$ºÍ$\frac{{x}^{2}}{20}-\frac{{y}^{2}}{16}=1$£¨y£¾0£©¡­£®£¨3·Ö£©
£¨¢ò£©ÇúÏßC2µÄ½¥½üÏßΪy=¡À$\frac{b}{a}x$£¬Èçͼ£¬ÉèÖ±Ïßl£ºy=$\frac{b}{a}£¨x-m£©$
Ôò$\left\{\begin{array}{l}{y=\frac{b}{a}£¨x-m£©}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$⇒2x2-2mx+£¨m2-a2£©=0
¡÷=£¨2m£©2-4•2•£¨m2-a2£©=8a2-4m2£¾0⇒-$\sqrt{2}a£¼m£¼\sqrt{2}a$
ÓÖÓÉÊýÐνáºÏÖªm¡Ýa£¬$a¡Üm£¼\sqrt{2}a$
ÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬M£¨x0£¬y0£©Ôò$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=m}\\{{x}_{1}{x}_{2}=\frac{{m}^{2}-{a}^{2}}{2}}\end{array}\right.$£¬
¡à${x}_{0}=\frac{{x}_{1}+{x}_{2}}{2}=\frac{m}{2}$£¬${y}_{0}=\frac{b}{a}£¨{x}_{0}-m£©=-\frac{b}{a}•\frac{m}{2}$
¡à${y}_{0}=-\frac{b}{a}{x}_{0}$£¬¼´µãMÔÚÖ±Ïßy=-$\frac{b}{a}x$ÉÏ£®  ¡­£¨7·Ö£©
£¨¢ó£©ÓÉ£¨¢ñ£©Öª£¬ÇúÏßC1Ϊ$\frac{{x}^{2}}{20}+\frac{{y}^{2}}{16}=1£¨y¡Ü0£©$£¬µãF4£¨6£¬0£©£®
ÉèÖ±Ïßl1µÄ·½³ÌΪx=ny+6£¨n£¾0£©
ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{20}+\frac{{y}^{2}}{16}=1}\\{x=ny+6}\end{array}\right.$⇒£¨4n2+5£©y2+48ny+64=0
¡÷=£¨48n£©2-4¡Á64£¨4n2+5£©£¾0⇒n2£¾1
ÉèC£¨x3£¬y3£©£¬D£¨x4£¬y4£©ÓÉΤ´ï¶¨Àí£º$\left\{\begin{array}{l}{{y}_{3}+{y}_{4}=\frac{-48n}{4{n}^{2}+5}}\\{{y}_{3}{y}_{4}=\frac{64}{4{n}^{2}+5}}\end{array}\right.$
|y3-y4|=$\sqrt{£¨{y}_{3}+{y}_{4}£©^{2}-{y}_{3}{y}_{4}}=16\sqrt{5}\frac{\sqrt{{n}^{2}-1}}{4{n}^{2}+5}$£®
s¡÷CDF1=$\frac{1}{2}$|F1F4|¡Á|y3-y4|=$\frac{1}{2}¡Á8¡Á16\sqrt{5}¡Á\frac{\sqrt{{n}^{2}-1}}{4{n}^{2}+5}=64\sqrt{5}\frac{\sqrt{{n}^{2}-1}}{4{n}^{2}+5}$
Áît=$\sqrt{{n}^{2}-1}£¾0$£¬¡àn2=t2+1£¬s¡÷CDF1=64$\sqrt{5}$¡Á$\frac{t}{4{t}^{2}+9}=64\sqrt{5}\frac{1}{4t+\frac{9}{t}}$
¡ßt£¾0£¬¡à$4t+\frac{9}{t}¡Ý12$£¬µ±ÇÒ½öµ±t=$\frac{3}{2}$¼´n=$\frac{\sqrt{13}}{2}$ʱµÈºÅ³ÉÁ¢
¡àn=$\frac{\sqrt{13}}{2}$ʱ£¬¡÷CDF1Ãæ»ýµÄ×î´óÖµ$\frac{16\sqrt{5}}{3}$¡­£®£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²ÓëË«ÇúÏߵıê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâת»¯Îª·½³ÌÁªÁ¢¿ÉµÃ¸ùÓëϵÊýµÄ¹ØÏµ¡¢ÏÒ³¤¹«Ê½¡¢Èý½ÇÐεÄÃæ»ý¼ÆË㹫ʽ¡¢»ù±¾²»µÈʽµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®»¯¼ò$\sqrt{1-2sin1cos1}$µÄ½á¹ûΪ£¨¡¡¡¡£©
A£®sin1-cos1B£®cos1-sin1C£®sin1+cos1D£®-sin1-cos1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®º¯Êýf£¨x£©=loga£¨3-ax£©£¨a£¾0£¬a¡Ù1£©
£¨1£©µ±a=3ʱ£¬Çóº¯Êýf£¨x£©µÄ¶¨ÒåÓò£¬²¢Ö¤Ã÷g£¨x£©=f£¨x£©-loga£¨3+ax£©µÄÆæÅ¼ÐÔ£»
£¨2£©ÊÇ·ñ´æÔÚʵÊýa£¬Ê¹º¯Êýf£¨x£©ÔÚ[2£¬3]µÝÔö£¬²¢ÇÒ×î´óֵΪ1£¬Èô´æÔÚ£¬Çó³öaµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Èô±äÁ¿x£¬yÂú×ãÌõ$\left\{\begin{array}{l}y¡Ý0\\ x+2y¡Ý1\\ x+4y¡Ü3\end{array}\right.$Ôòz=x2+y2µÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®0B£®$\frac{1}{5}$C£®2D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÈôÃüÌ⣺¡°´æÔÚ$x¡Ê[\frac{¦Ð}{4}£¬\frac{¦Ð}{3}]$£¬Ê¹tan2x-atanx-2£¼0³ÉÁ¢¡±Îª¼ÙÃüÌ⣬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨-¡Þ£¬-1]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªF1£¬F2ÊÇÍÖÔ²ºÍË«ÇúÏߵĹ«¹²½¹µã£¬PÊÇËüÃǵÄÒ»¸ö¹«¹²µã£¬ÇÒ$¡Ï{F_1}P{F_2}=\frac{¦Ð}{2}$£¬ÍÖÔ²ºÍË«ÇúÏßµÄÀëÐÄÂÊ·Ö±ðΪe1¡¢e2£¬Ôò$\frac{1}{{{e_1}^2}}+\frac{1}{{{e_2}^2}}$=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®º¯Êýy=f£¨x£©Âú×ã¶ÔÈÎÒâµÄx£¬y¡ÊR£¬¶¼ÓÐf£¨x+y£©=f£¨x£©•f£¨y£©£¬ÇÒf£¨1£©=2£¬Èôg£¨x£©ÊÇf£¨x£©µÄ·´º¯Êý£¨×¢£º»¥Îª·´º¯ÊýµÄº¯ÊýͼÏó¹ØÓÚÖ±Ïßy=x¶Ô³Æ£©£¬Ôòg£¨8£©=£¨¡¡¡¡£©
A£®3B£®4C£®16D£®$\frac{1}{256}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®¡°a2+b2¡Ù0¡±µÄº¬ÒåΪ£¨¡¡¡¡£©
A£®a£¬b ²»È«Îª0B£®a£¬bÈ«²»Îª0
C£®a£¬b ÖÁÉÙÓÐÒ»¸öΪ0D£®a²»Îª0ÇÒbΪ0£¬»ò b²»Îª0ÇÒaΪ0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖª${£¨{1+x}£©^{10}}={a_0}+{a_1}£¨{1-x}£©+{a_2}{£¨{1-x}£©^2}+L+{a_{10}}{£¨{1-x}£©^{10}}$£¬Ôòa8µÈÓÚ£¨¡¡¡¡£©
A£®-5B£®5C£®90D£®180

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸