精英家教网 > 高中数学 > 题目详情
12.已知${({1+x})^{10}}={a_0}+{a_1}({1-x})+{a_2}{({1-x})^2}+L+{a_{10}}{({1-x})^{10}}$,则a8等于(  )
A.-5B.5C.90D.180

分析 将1+x写成2-(1-x),利用二项展开式的通项公式求出通项,令1-x的指数为8,即可求出a8

解答 解:∵(1+x)10=[2-(1-x)]10
∴其展开式的通项为:
Tr+1=(-1)r210-rC10r(1-x)r
令r=8,得a8=4C108=180.
故选:D.

点评 本题考查了利用二次展开式的通项公式求展开式的特定项问题,关键是将底数改写成右边的底数形式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,曲线Γ由曲线C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0,y≤0)和曲线C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0,y>0)组成,其中点F1
F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点,
(Ⅰ)若F2(2,0),F3(-6,0),求曲线Γ的方程;
(Ⅱ)如图,作直线l平行于曲线C2的渐近线,交曲线C1于点A、B,求证:弦AB的中点M必在曲线C2的另一条渐近线上;
(Ⅲ)对于(Ⅰ)中的曲线Γ,若直线l1过点F4交曲线C1于点C、D,求△CDF1面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,an>0,且满足:(an+2)2=4Sn+4n+1,n∈N*
(1)求a1及通项公式an
(2)若bn=(-1)n•an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义在R上的偶函数f(x)满足f(x)+f(x-1)=0,且在[-5,-4]上是增函数,A,B是锐角三角形的两个内角,则(  )
A.f(sinA)>f(cosB)B.f(sinA)<f(cosB)C.f(sinA)>f(sinB)D.f(cosA)>f(cosB)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图是一个正方体被切掉部分后所得几何体的三视图,则该几何体的体积为$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.$k=±\frac{{\sqrt{5}}}{2}$是直线y=kx-1与曲线x2-y2=4仅有一个公共点的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在长丰中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.
(1)求第二小组的频率,并补全这个频率分布直方图;
(2)求这两个班参赛的学生人数,并回答这两个班参赛学生的成绩的中位数应落在第几小组内.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为$\left\{\begin{array}{l}{x=tsinφ}\\{y=1+tcosφ}\end{array}\right.$(t为参数,0<φ<π),曲线C的极坐标方程为ρcos2θ=4sinθ.
(Ⅰ) 求直线l的普通方程和曲线C的直角坐标方程;
(II)设直线l与曲线C相交于A,B两点,当φ变化时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.椭圆与双曲线$\frac{x^2}{4}-\frac{y^2}{12}=1$的焦点相同,且椭圆上一点到两焦点的距离之和为10,则椭圆的离心率为$\frac{4}{5}$.

查看答案和解析>>

同步练习册答案