分析 (1)利用数列递推关系、等差数列的通项公式即可得出.
(2)对n分类讨论,利用分组求和即可得出.
解答 解:(1)∵(an+2)2=4Sn+4n+1,n∈N*,∴$({a}_{1}+2)^{2}$=4a1+5,a1>0,解得a1=1.
n≥2时,$({a}_{n-1}+2)^{2}$=4Sn-1+4(n-1)+1,相减可得:${a}_{n}^{2}-$$({a}_{n-1}+2)^{2}$=0,an>0,化为:an-an-1=2.
∴数列{an}是等差数列,公差为2,首项为1.
∴an=1+2(n-1)=2n-1.
(2)bn=(-1)n•an=(-1)n•(2n-1).
n=2k(k∈N*)时,b2k-1+b2k=-(2n-1)+(2n+1)=2.
∴数列{bn}的前n项和Tn=n.
n=2k-1(k∈N*)时,b2k+b2k+1=(2n-1)-(2n+1)=-2.
∴数列{bn}的前n项和Tn=-1-$\frac{n-1}{2}×2$=-n.
∴Tn=$\left\{\begin{array}{l}{n,n=2k}\\{-n,n=2k-1}\end{array}\right.$,k∈N*.
点评 本题考查了分组求和、等差数列的通项公式、数列递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 16 | D. | $\frac{1}{256}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a,b 不全为0 | B. | a,b全不为0 | ||
| C. | a,b 至少有一个为0 | D. | a不为0且b为0,或 b不为0且a为0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=x+3 | B. | f(x)=x-3 | C. | f(x)=2x+3 | D. | f(x)=2x-3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{1}{2},2)$ | B. | (2,+∞) | C. | (1,2) | D. | $(\frac{1}{2},1)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -5 | B. | 5 | C. | 90 | D. | 180 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com