精英家教网 > 高中数学 > 题目详情
13.如图,在△ABC中,AC=10,$AB=2\sqrt{19}$,BC=6,D是边BC延长线上的一点,∠ADB=30°,求AD的长.

分析 利用余弦定理,求出∠ACB=60°,∠ACD=120°,在△ACD中,AC=10,∠ADB=30°,∠ACD=120°,利用正弦定理可得结论.

解答 解:在△ABC中,AB=10,AC=14,BC=6,
由余弦定理得$cos∠ACB=\frac{{A{C^2}+B{C^2}-A{B^2}}}{2AC•BC}=\frac{100+36-76}{2×10×6}=\frac{1}{2}$,
所以∠ACB=60°,∠ACD=120°,
在△ACD中,AC=10,∠ADB=30°,∠ACD=120°,…8分
由正弦定理得,$\frac{AC}{sin∠ADB}=\frac{AD}{sin∠ACB}$
所以$AD=\frac{AC•sin∠ACB}{sin∠ADB}=\frac{{10•sin{{120}°}}}{{sin{{30}°}}}=10\sqrt{3}$…12分.

点评 本题考查正弦、余弦定理的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,an>0,且满足:(an+2)2=4Sn+4n+1,n∈N*
(1)求a1及通项公式an
(2)若bn=(-1)n•an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在长丰中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.
(1)求第二小组的频率,并补全这个频率分布直方图;
(2)求这两个班参赛的学生人数,并回答这两个班参赛学生的成绩的中位数应落在第几小组内.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为$\left\{\begin{array}{l}{x=tsinφ}\\{y=1+tcosφ}\end{array}\right.$(t为参数,0<φ<π),曲线C的极坐标方程为ρcos2θ=4sinθ.
(Ⅰ) 求直线l的普通方程和曲线C的直角坐标方程;
(II)设直线l与曲线C相交于A,B两点,当φ变化时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ2+12ρcosθ+11=0.
(Ⅰ)说明C是哪种曲线?并将C的方程化为直角坐标方程;
(Ⅱ)直线l与C交于A,B两点,|AB|=$\sqrt{10}$,求l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.f(x)=x(x-c)2在x=2处有极小值,则常数c的值为(  )
A.2B.6C.2或6D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数y=f(x),若在定义域内存在x0,使得f(-x0)=-f(x0)成立,则称x0为函数f(x)的局部对称点.
(1)若a∈R,a≠0,证明:函数f(x)=ax2+x-a必有局部对称点;
(2)若函数f(x)=2x+b在区间[-1,1]内有局部对称点,求实数b的取值范围;
(3)若函数f(x)=4x-m•2x+1+m2-3在R上有局部对称点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.椭圆与双曲线$\frac{x^2}{4}-\frac{y^2}{12}=1$的焦点相同,且椭圆上一点到两焦点的距离之和为10,则椭圆的离心率为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.甲、乙两人的各科成绩如茎叶图所示,则下列说法正确的是(  )
A.甲的中位数是89,乙的中位数是98
B.甲的各科成绩比乙各科成绩稳定
C.甲的众数是89,乙的众数是98
D.甲、乙二人的各科成绩的平均分不相同

查看答案和解析>>

同步练习册答案