分析 (Ⅰ)由$\left\{\begin{array}{l}{ρ^2}={x^2}+{y^2}\\ ρcosθ=x\\ ρsinθ=y\end{array}\right.$,得曲线C的直角坐标方程为x2+y2+12x+11=0,即可得出结论;
(Ⅱ)$|AB|=|{ρ_1}-{ρ_2}|=\sqrt{{{({ρ_1}+{ρ_2})}^2}-4{ρ_1}{ρ_2}}=\sqrt{144{{cos}^2}α-44}$,由$|AB|=\sqrt{10}$,得${cos^2}α=\frac{3}{8}$,$tanα=±\frac{{\sqrt{15}}}{3}$,即可求l的斜率.
解答 解:(Ⅰ)由$\left\{\begin{array}{l}{ρ^2}={x^2}+{y^2}\\ ρcosθ=x\\ ρsinθ=y\end{array}\right.$,得曲线C的直角坐标方程为x2+y2+12x+11=0…3分
即(x+6)2+y2=25,曲线C是以(-6,0)为圆心,5为半径的圆.…5分
$\frac{{36{k^2}}}{{1+{k^2}}}=\frac{90}{4}$,…8分
(Ⅱ)易得直线l的极坐标方程为θ=α(ρ∈R),
设A,B的极径分别为ρ1,ρ2,其是ρ2+12ρcosθ+11=0的解,
于是ρ1+ρ2=-12cosα,ρ1ρ2=11,$|AB|=|{ρ_1}-{ρ_2}|=\sqrt{{{({ρ_1}+{ρ_2})}^2}-4{ρ_1}{ρ_2}}=\sqrt{144{{cos}^2}α-44}$,…8分
由$|AB|=\sqrt{10}$,得${cos^2}α=\frac{3}{8}$,$tanα=±\frac{{\sqrt{15}}}{3}$,
所以l的斜率为$\frac{{\sqrt{15}}}{3}$或$-\frac{{\sqrt{15}}}{3}$.…10分.
点评 本题考查极坐标方程与直角坐标方程的互化,考查极坐标方程的运用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | f(x)=x+3 | B. | f(x)=x-3 | C. | f(x)=2x+3 | D. | f(x)=2x-3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | e | B. | 2 | C. | 1 | D. | $\frac{1}{e}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com