精英家教网 > 高中数学 > 题目详情
8.在直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ2+12ρcosθ+11=0.
(Ⅰ)说明C是哪种曲线?并将C的方程化为直角坐标方程;
(Ⅱ)直线l与C交于A,B两点,|AB|=$\sqrt{10}$,求l的斜率.

分析 (Ⅰ)由$\left\{\begin{array}{l}{ρ^2}={x^2}+{y^2}\\ ρcosθ=x\\ ρsinθ=y\end{array}\right.$,得曲线C的直角坐标方程为x2+y2+12x+11=0,即可得出结论;
(Ⅱ)$|AB|=|{ρ_1}-{ρ_2}|=\sqrt{{{({ρ_1}+{ρ_2})}^2}-4{ρ_1}{ρ_2}}=\sqrt{144{{cos}^2}α-44}$,由$|AB|=\sqrt{10}$,得${cos^2}α=\frac{3}{8}$,$tanα=±\frac{{\sqrt{15}}}{3}$,即可求l的斜率.

解答 解:(Ⅰ)由$\left\{\begin{array}{l}{ρ^2}={x^2}+{y^2}\\ ρcosθ=x\\ ρsinθ=y\end{array}\right.$,得曲线C的直角坐标方程为x2+y2+12x+11=0…3分
即(x+6)2+y2=25,曲线C是以(-6,0)为圆心,5为半径的圆.…5分
$\frac{{36{k^2}}}{{1+{k^2}}}=\frac{90}{4}$,…8分
(Ⅱ)易得直线l的极坐标方程为θ=α(ρ∈R),
设A,B的极径分别为ρ1,ρ2,其是ρ2+12ρcosθ+11=0的解,
于是ρ12=-12cosα,ρ1ρ2=11,$|AB|=|{ρ_1}-{ρ_2}|=\sqrt{{{({ρ_1}+{ρ_2})}^2}-4{ρ_1}{ρ_2}}=\sqrt{144{{cos}^2}α-44}$,…8分
由$|AB|=\sqrt{10}$,得${cos^2}α=\frac{3}{8}$,$tanα=±\frac{{\sqrt{15}}}{3}$,
所以l的斜率为$\frac{{\sqrt{15}}}{3}$或$-\frac{{\sqrt{15}}}{3}$.…10分.

点评 本题考查极坐标方程与直角坐标方程的互化,考查极坐标方程的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知f(x)是一次函数,且满足3f(x+1)-f(x)=2x+9,则函数f(x)的解析式为(  )
A.f(x)=x+3B.f(x)=x-3C.f(x)=2x+3D.f(x)=2x-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列说法正确的是①④
①已知定点F1(-1,0)、F2(1,0),则满足||PF1|-|PF2||=3的动点P的轨迹不存在;
②若动点P到定点F的距离等于动点P到定直线l的距离,则动点P的轨迹为抛物线;
③命题“?x<0,都有x-x2<0”的否定为“?x0≥0,使得${x_0}-{x_0}^2≥0$”;
④已知定点F1(-2,0)、F2(2,0),则满足|PF1|+|PF2|=4的动点P的轨迹为线段F1F2
⑤$\frac{x^2}{m}-\frac{y^2}{n}=1({mn>0})$表示焦点在x轴上的双曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=(x+1)lnx-a(x-1).
(1)当a=3时,求曲线y=f(x)在(1,f(1))处的切线方程;
(2)设$g(x)=\frac{f(x)}{x+1}$,且a>1,讨论函数g(x)的单调性和极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设${\vec e_1},{\vec e_2}$满足$|{\vec e_1}|=2,|{\vec e_2}|=1$,且${\vec e_1}$与$\vec e$的夹角为60°,
(1)若$2t{\vec e_1}+7{\vec e_2}$与${\vec e_1}+t{\vec e_2}$的夹角为钝角,求实数t的取值范围
(2)求$2{\vec e_1}+{\vec e_2}$在$3{\vec e_1}+2{\vec e_2}$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在△ABC中,AC=10,$AB=2\sqrt{19}$,BC=6,D是边BC延长线上的一点,∠ADB=30°,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知四棱锥P-ABCD,底面ABCD为边长为2的菱形,PA⊥平面ABCD,∠ABC=60°,E是BC的中点,PA=AB.
(Ⅰ) 证明:AE⊥PD;
(Ⅱ) 若F为PD上的点,EF⊥PD,求EF与平面PAD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$的左焦点与右顶点之间的距离等于(  )
A.6B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某质点运动的距离y与时间t的关系为y=t+lnt,那么这个质点在t=1时的瞬时速度为(  )
A.eB.2C.1D.$\frac{1}{e}$

查看答案和解析>>

同步练习册答案