精英家教网 > 高中数学 > 题目详情
3.设${\vec e_1},{\vec e_2}$满足$|{\vec e_1}|=2,|{\vec e_2}|=1$,且${\vec e_1}$与$\vec e$的夹角为60°,
(1)若$2t{\vec e_1}+7{\vec e_2}$与${\vec e_1}+t{\vec e_2}$的夹角为钝角,求实数t的取值范围
(2)求$2{\vec e_1}+{\vec e_2}$在$3{\vec e_1}+2{\vec e_2}$方向上的投影.

分析 (1)由$2t{\vec e_1}+7{\vec e_2}$与${\vec e_1}+t{\vec e_2}$的夹角为钝角,得($2t{\vec e_1}+7{\vec e_2}$)•(${\vec e_1}+t{\vec e_2}$)<0,且$2t{\vec e_1}+7{\vec e_2}≠λ({{{\vec e}_1}+t{{\vec e}_2}})({λ<0})$.展开得答案;
(2)直接利用向量在向量方向上的投影的概念求解.

解答 解:(1)$|{\vec e_1}|=2,|{\vec e_2}|=1$,且${\vec e_1}$与$\vec e$的夹角为60°,
∵$2t{\vec e_1}+7{\vec e_2}$与${\vec e_1}+t{\vec e_2}$的夹角为钝角,
∴($2t{\vec e_1}+7{\vec e_2}$)•(${\vec e_1}+t{\vec e_2}$)<0,且$2t{\vec e_1}+7{\vec e_2}≠λ({{{\vec e}_1}+t{{\vec e}_2}})({λ<0})$.
∴$2t{\overrightarrow{{e}_{1}}}^{2}+(2{t}^{2}+7)\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}+7t{\overrightarrow{{e}_{2}}}^{2}$<0,且$2t{\vec e_1}+7{\vec e_2}≠λ({{{\vec e}_1}+t{{\vec e}_2}})({λ<0})$.
即$8t+(2{t}^{2}+7)×2×1×\frac{1}{2}+7t$<0,且$2t{\vec e_1}+7{\vec e_2}≠λ({{{\vec e}_1}+t{{\vec e}_2}})({λ<0})$.
解得:$-7<t<-\frac{1}{2}$且$t≠-\frac{{\sqrt{14}}}{2}$;
(2)$2{\vec e_1}+{\vec e_2}$在$3{\vec e_1}+2{\vec e_2}$方向上的投影为:
$\frac{(2\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}})•(3\overrightarrow{{e}_{1}}+2\overrightarrow{{e}_{2}})}{|3\overrightarrow{{e}_{1}}+2\overrightarrow{{e}_{2}}|}$=$\frac{6{\overrightarrow{{e}_{1}}}^{2}+2{\overrightarrow{{e}_{2}}}^{2}+7\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}}{\sqrt{9{\overrightarrow{{e}_{1}}}^{2}+4{\overrightarrow{{e}_{2}}}^{2}+12\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}}}$=$\frac{33\sqrt{13}}{26}$.

点评 本题考查平面向量的数量积运算,考查向量在向量方向上投影的概念,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.如果函数y=sinωx•cosωx(ω>0)的最小正周期为4π,那么常数ω为(  )
A.$\frac{1}{4}$B.2C.$\frac{1}{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为y2=4x或y2=16x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知p:x2-8x-20<0,q:x2-2x+1-a2≤0(a>0),若¬p是¬q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知△ABC的内角A,B,C的对边分别为a,b,c,若a=1,2cosC+c=2b.
(Ⅰ)求A;
(Ⅱ)若b=$\frac{1}{2}$,求sinC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ2+12ρcosθ+11=0.
(Ⅰ)说明C是哪种曲线?并将C的方程化为直角坐标方程;
(Ⅱ)直线l与C交于A,B两点,|AB|=$\sqrt{10}$,求l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和${S_n}={n^2}+2n$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若${b_n}={2^n}$,求数列{anbn2}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如表是某厂1~4月份用水量(单位:百吨)的一组数据.由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归方程是$\stackrel{∧}{y}$=-0.7x+a,则a=(  )
月份x1234
用水量y4.5432.5
A.10.5B.5.15C.5.2D.5.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.集合$A=\left\{{x|f(x)=\sqrt{{2^x}-1}}\right\}$,$B=\left\{{y|y={{log}_2}({{2^x}+2})}\right\}$,则A∩∁RB=(  )
A.(1,+∞)B.[0,1]C.[0,1)D.[0,2)

查看答案和解析>>

同步练习册答案