精英家教网 > 高中数学 > 题目详情
18.已知△ABC的内角A,B,C的对边分别为a,b,c,若a=1,2cosC+c=2b.
(Ⅰ)求A;
(Ⅱ)若b=$\frac{1}{2}$,求sinC.

分析 (I)利用余弦定理即可得出.
(II)由b=$\frac{1}{2}$,及b2+c2-1=bc,解得c,再利用正弦定理即可得出.

解答 解:(Ⅰ)∵a=1,2cosC+c=2b.,
由余弦定理得$2×\frac{{1}^{2}+{b}^{2}-{c}^{2}}{2b}$+c=2b,即b2+c2-1=bc.…(2分)
∴cosA=$\frac{{b}^{2}+{c}^{2}-1}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$…(4分)
由于0<A<π,∴A=$\frac{π}{3}$.…(6分)
(Ⅱ)由b=$\frac{1}{2}$,及b2+c2-1=bc,得$\frac{1}{4}+{c}^{2}$-1=$\frac{1}{2}$c,…(7分)
即4c2-2c-3=0,c>0.…(8分)
解得c=$\frac{1+\sqrt{13}}{4}$.…(9分)
由正弦定理得$\frac{c}{sinC}$=$\frac{a}{sinA}$,…(10分)
得sinC=$\frac{1+\sqrt{13}}{4}×sin6{0}^{°}$=$\frac{\sqrt{3}+\sqrt{39}}{8}$.

点评 本题考查了正弦定理余弦定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.三棱锥A-BCD的底面是正三角形,侧棱相等且两两垂直,点P是该棱锥表面(包括棱)上一点,且P到四个顶点的距离有且只有两个不同的值,则这样的点P的个数有(  )
A.5B.6C.8D.11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知长方体的长宽高分别为3,2,1,则该长方体外接球的表面积为14π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A,B,C满足A∪B={a,b,c},则满足条件的组合(A,B)共有(  )组.
A.4B.8C.9D.27

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若a>0,b>0,且函数f(x)=6x3-ax2-2bx+2在x=1处有极值,若t=ab,则t的最大值为(  )
A.$\frac{81}{4}$B.6C.$\frac{81}{2}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设${\vec e_1},{\vec e_2}$满足$|{\vec e_1}|=2,|{\vec e_2}|=1$,且${\vec e_1}$与$\vec e$的夹角为60°,
(1)若$2t{\vec e_1}+7{\vec e_2}$与${\vec e_1}+t{\vec e_2}$的夹角为钝角,求实数t的取值范围
(2)求$2{\vec e_1}+{\vec e_2}$在$3{\vec e_1}+2{\vec e_2}$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.命题p:若x=y=0,则x2+y2=0,如果把命题p视为原命题,那么原命题、逆命题、否命题、逆否命题四个命题中正确命题的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆$\frac{x^2}{b^2}+\frac{y^2}{a^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{2}}}{2}$,且a2=2b.
(1)求椭圆的方程;
(2)若直线l:x-y+m=0与椭圆交于A,B两点,且线段AB的中点在圆x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在正三棱柱ABC-A1B1C1中,AB=2,M,N分别是CC1,AB的中点.
(1)求证:CN∥平面AMB1
(2)若二面角A-MB1-C的大小为45°,求三棱柱ABC-A1B1C1的高.

查看答案和解析>>

同步练习册答案