精英家教网 > 高中数学 > 题目详情
20.如图,已知四棱锥P-ABCD,底面ABCD为边长为2的菱形,PA⊥平面ABCD,∠ABC=60°,E是BC的中点,PA=AB.
(Ⅰ) 证明:AE⊥PD;
(Ⅱ) 若F为PD上的点,EF⊥PD,求EF与平面PAD所成角的正切值.

分析 (1)证明AE⊥AD,PA⊥AE,推出AE⊥平面PAD,然后证明AE⊥PD;
(2)连结AF,说明∠AFE为EF与平面PAD所成的角,利用tan∠AFE=$\frac{AE}{AF}$,求解即可.

解答 (1)证明:∵四边形ABCD为菱形,且∠ABC=60°,
∴△ABC为正三角形,又E为BC中点,
∴AE⊥BC;又AD∥BC,
∴AE⊥AD,…(3分)
∵PA⊥平面ABCD,又AE?平面ABCD,
∴PA⊥AE,
∴AE⊥平面PAD,又PD?平面PAD,
∴AE⊥PD;…(6分)
(2)连结AF,由(1)知AE⊥平面PAD,
∴∠AFE为EF与平面PAD所成的角,且AF⊥PD…(8分)
依题意,AF=$\sqrt{2}$,AE=$\sqrt{3}$,
∴tan∠AFE=$\frac{AE}{AF}$=$\frac{\sqrt{6}}{2}$,
∴EF与平面PAD所成角的正切值为$\frac{\sqrt{6}}{2}$…(12分)

点评 本题考查直线与平面垂直的判定定理的应用,直线与平面所成角的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知实数x,y满足不等式组$\left\{{\begin{array}{l}{x+y-2≤0}\\{x-y≤0}\\{x≥-3}\end{array}}\right.$,则z=x+3y+7的最大值为(  )
A.-5B.11C.15D.19

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知p:x2-8x-20<0,q:x2-2x+1-a2≤0(a>0),若¬p是¬q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ2+12ρcosθ+11=0.
(Ⅰ)说明C是哪种曲线?并将C的方程化为直角坐标方程;
(Ⅱ)直线l与C交于A,B两点,|AB|=$\sqrt{10}$,求l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和${S_n}={n^2}+2n$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若${b_n}={2^n}$,求数列{anbn2}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数y=f(x),若在定义域内存在x0,使得f(-x0)=-f(x0)成立,则称x0为函数f(x)的局部对称点.
(1)若a∈R,a≠0,证明:函数f(x)=ax2+x-a必有局部对称点;
(2)若函数f(x)=2x+b在区间[-1,1]内有局部对称点,求实数b的取值范围;
(3)若函数f(x)=4x-m•2x+1+m2-3在R上有局部对称点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如表是某厂1~4月份用水量(单位:百吨)的一组数据.由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归方程是$\stackrel{∧}{y}$=-0.7x+a,则a=(  )
月份x1234
用水量y4.5432.5
A.10.5B.5.15C.5.2D.5.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知在极坐标系中,点A(2,$\frac{π}{2}$),B($\sqrt{2}$,$\frac{3π}{4}$),O(0,0),则△ABO为(  )
A.正三角形B.直角三角形C.等腰锐角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某个不透明的盒子里有5枚质地均匀、大小相等的铜币,铜币有两种颜色,一种为黄色,一种为绿色.其中黄色铜币两枚,标号分别为1,2,绿色铜币三枚,标号分别为1,2,3.
(1)从该盒子中任取2枚,试列出一次实验所有可能出现的结果;
(2)从该盒子中任取2枚,求这两枚铜币颜色不同且标号之和大于3的概率.

查看答案和解析>>

同步练习册答案