精英家教网 > 高中数学 > 题目详情
11.“a2+b2≠0”的含义为(  )
A.a,b 不全为0B.a,b全不为0
C.a,b 至少有一个为0D.a不为0且b为0,或 b不为0且a为0

分析 对a2+b2≠0进行解释,找出其等价条件,由此等价条件对照四个选项可得正确选项.

解答 解:a2+b2≠0的等价条件是a≠0或b≠0,即两者中不全为0
对照四个选项,只有A与此意思同,A正确;
B中a,b全不为0,是a2+b2≠0充分不必要条件;B错误.
C中a,b至少有一个为0,C错误.
D中只是两个数仅有一个为0,概括不全面,故D不对;
故选A.

点评 本题考查逻辑连接词“或”,求解的关键是对≠的正确理解与逻辑连接词至少有一个、和、或的意义的理解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.对于R上可导函数f(x),若满足(x-2)f′(x)>0,则必有(  )
A.f(1)+f(3)<2f(2)B.f(1)+f(3)>2f(2)C.f(1)+f(3)>f(0)+f(4)D.f(1)+f(0)<f(3)+f(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,曲线Γ由曲线C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0,y≤0)和曲线C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0,y>0)组成,其中点F1
F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点,
(Ⅰ)若F2(2,0),F3(-6,0),求曲线Γ的方程;
(Ⅱ)如图,作直线l平行于曲线C2的渐近线,交曲线C1于点A、B,求证:弦AB的中点M必在曲线C2的另一条渐近线上;
(Ⅲ)对于(Ⅰ)中的曲线Γ,若直线l1过点F4交曲线C1于点C、D,求△CDF1面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若$α∈(0,π),β∈(0,π),\frac{sin2α}{1+cos2α}=\frac{4}{3},cos(α+β)=\frac{5}{13}$,则sinβ=$\frac{16}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,AB=AC,AD,BE分别为∠BAC,∠ABC的角平分线,K是△ADC的内心,∠BEK=45°,则∠A有可能为多少度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.${∫}_{-1}^{1}$($\sqrt{1-{x}^{2}}$+x)dx=(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{π}{2}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,an>0,且满足:(an+2)2=4Sn+4n+1,n∈N*
(1)求a1及通项公式an
(2)若bn=(-1)n•an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义在R上的偶函数f(x)满足f(x)+f(x-1)=0,且在[-5,-4]上是增函数,A,B是锐角三角形的两个内角,则(  )
A.f(sinA)>f(cosB)B.f(sinA)<f(cosB)C.f(sinA)>f(sinB)D.f(cosA)>f(cosB)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为$\left\{\begin{array}{l}{x=tsinφ}\\{y=1+tcosφ}\end{array}\right.$(t为参数,0<φ<π),曲线C的极坐标方程为ρcos2θ=4sinθ.
(Ⅰ) 求直线l的普通方程和曲线C的直角坐标方程;
(II)设直线l与曲线C相交于A,B两点,当φ变化时,求|AB|的最小值.

查看答案和解析>>

同步练习册答案