精英家教网 > 高中数学 > 题目详情
19.若$α∈(0,π),β∈(0,π),\frac{sin2α}{1+cos2α}=\frac{4}{3},cos(α+β)=\frac{5}{13}$,则sinβ=$\frac{16}{65}$.

分析 利用构造思想,sin[(α+β)-α]=sinβ,由cos(α+β)=$\frac{5}{13}$,求出sin(α+β)的值即可求.

解答 解:由a∈(0,π),
$\frac{sin2α}{1+cos2α}=\frac{2sinαcosα}{2co{s}^{2}α}=\frac{sinα}{cosα}=\frac{4}{3}$>0,
∴$α∈(0,\frac{π}{2})$
∵sin2α+cos2α=1
解得:sinα=$\frac{4}{5}$,cosα=$\frac{3}{5}$
由cos(a+β)=$\frac{5}{13}$>0,
∵$α∈(0,\frac{π}{2})$,β∈(0,π)
∴(α+β)∈(0,$\frac{π}{2}$)
∴sin(a+β)=$\frac{12}{13}$
那么:sinβ=sin[(α+β)-α]=sin(α+β)cosα-cos(α+β)sinα=$\frac{12}{13}$×$\frac{3}{5}$-$\frac{5}{13}×\frac{4}{5}$=$\frac{16}{65}$
故答案为$\frac{16}{65}$.

点评 本题主要考察了同角三角函数关系式,两角和与差的构造思想.和计算能力.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.数列{an}满足log2an+1-log2an=1,且a1=1,则通项公式an=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若变量x,y满足条$\left\{\begin{array}{l}y≥0\\ x+2y≥1\\ x+4y≤3\end{array}\right.$则z=x2+y2的最小值是(  )
A.0B.$\frac{1}{5}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且$∠{F_1}P{F_2}=\frac{π}{2}$,椭圆和双曲线的离心率分别为e1、e2,则$\frac{1}{{{e_1}^2}}+\frac{1}{{{e_2}^2}}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=f(x)满足对任意的x,y∈R,都有f(x+y)=f(x)•f(y),且f(1)=2,若g(x)是f(x)的反函数(注:互为反函数的函数图象关于直线y=x对称),则g(8)=(  )
A.3B.4C.16D.$\frac{1}{256}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.解关于x的不等式:x2-(a2+a)x+a3≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“a2+b2≠0”的含义为(  )
A.a,b 不全为0B.a,b全不为0
C.a,b 至少有一个为0D.a不为0且b为0,或 b不为0且a为0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知方程$\frac{x^2}{2-k}+\frac{y^2}{2k+1}=1$表示焦点在y轴上的椭圆,则实数k的取值范围是(  )
A.$(\frac{1}{2},2)$B.(2,+∞)C.(1,2)D.$(\frac{1}{2},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,一只蚂蚁从点A出发沿着水平面的线条爬行到点C,再由点C沿着置于水平面的长方体的棱爬行至顶点B,则它可以爬行的不同的最短路径有(  )条.
A.40B.60C.80D.120

查看答案和解析>>

同步练习册答案