精英家教网 > 高中数学 > 题目详情
7.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且$∠{F_1}P{F_2}=\frac{π}{2}$,椭圆和双曲线的离心率分别为e1、e2,则$\frac{1}{{{e_1}^2}}+\frac{1}{{{e_2}^2}}$=2.

分析 先设椭圆的长半轴长为a1,双曲线的半实轴长a2,焦距2c.因为涉及椭圆及双曲线离心率的问题,所以需要找a1,a2,c之间的关系,而根据椭圆及双曲线的定义可以用a1,a2表示出|PF1|,|PF2|并且,$∠{F_1}P{F_2}=\frac{π}{2}$,在△F1PF2中根据勾股定理可得到:,${{a}_{1}}^{2}+{{a}_{1}}^{2}=2{c}^{2}$该式可变成:$\frac{1}{{{e_1}^2}}+\frac{1}{{{e_2}^2}}$=2.

解答 解:如图,设椭圆的长半轴长为a1,双曲线的半实轴长为a2,则根据椭圆及双曲线的定义:
得|PF1|+|PF2|=2a1+a2,∴|PF1|-||PF2|=2a2
∴|PF1|=a1+a2,|PF2|=a1-a2,设|F1F2|=2c,∠F1PF2=$\frac{π}{2}$,
在△PF1F2中由勾股定理得,4c2=(a1+a22+(a1-a22
∴化简得:${{a}_{1}}^{2}+{{a}_{1}}^{2}=2{c}^{2}$该式可变成:$\frac{1}{{{e_1}^2}}+\frac{1}{{{e_2}^2}}$=2.
故答案为:2

点评 考查椭圆及双曲线的交点,及椭圆与双曲线的定义,以及它们离心率的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.当0≤x≤$\frac{π}{2}$时,函数f(x)=sinx+$\sqrt{3}$cosx的(  )
A.最大值是$\sqrt{3}$,最小值是$\frac{1}{2}$B.最大值是$\sqrt{3}$,最小值是1
C.最大值是2,最小值是1D.最大值是2,最小值是$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知双曲线$\frac{x^2}{4}-\frac{y^2}{9}$=1,A,B是其两个焦点,点M在双曲线上,∠AMB=120°,则三角形AMB的面积为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知动点M到椭圆$\frac{x^2}{5}+{y^2}$=1左焦点的距离比到其右焦点的距离大2,则动点M的轨迹方程是(  )
A.$\frac{x^2}{3}-{y^2}=1(x≥\sqrt{3})$B.$\frac{x^2}{3}-{y^2}=1(x≤-\sqrt{3})$C.${x^2}-\frac{y^2}{3}=1(x≥1)$D.${x^2}-\frac{y^2}{3}=1(x≤-1)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,曲线Γ由曲线C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0,y≤0)和曲线C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0,y>0)组成,其中点F1
F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点,
(Ⅰ)若F2(2,0),F3(-6,0),求曲线Γ的方程;
(Ⅱ)如图,作直线l平行于曲线C2的渐近线,交曲线C1于点A、B,求证:弦AB的中点M必在曲线C2的另一条渐近线上;
(Ⅲ)对于(Ⅰ)中的曲线Γ,若直线l1过点F4交曲线C1于点C、D,求△CDF1面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列说法正确的是(  )
A.若f(x)是奇函数,则f(0)=0
B.若α是锐角,则2α是一象限或二象限角
C.若$\overrightarrow a∥\overrightarrow b,\overrightarrow b∥\overrightarrow c$,则$\overrightarrow a∥\overrightarrow c$
D.集合A={P|P⊆{1,2}}有4个元素

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若$α∈(0,π),β∈(0,π),\frac{sin2α}{1+cos2α}=\frac{4}{3},cos(α+β)=\frac{5}{13}$,则sinβ=$\frac{16}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.${∫}_{-1}^{1}$($\sqrt{1-{x}^{2}}$+x)dx=(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{π}{2}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.$k=±\frac{{\sqrt{5}}}{2}$是直线y=kx-1与曲线x2-y2=4仅有一个公共点的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

同步练习册答案