精英家教网 > 高中数学 > 题目详情
12.下列说法正确的是(  )
A.若f(x)是奇函数,则f(0)=0
B.若α是锐角,则2α是一象限或二象限角
C.若$\overrightarrow a∥\overrightarrow b,\overrightarrow b∥\overrightarrow c$,则$\overrightarrow a∥\overrightarrow c$
D.集合A={P|P⊆{1,2}}有4个元素

分析 A,若f(x)是奇函数,且定义域中有0,则f(0)=0;
B,若α=450,则2α不是一象限或二象限角;
C,当$\overrightarrow{b}=\overrightarrow{0}$时,不成立;
D,若P⊆{1,2},集合P可以是{1},{2},{1,2},∅.

解答 解:对于A,若f(x)是奇函数,且定义域中有0,则f(0)=0,若定义域中无0,则f(0)无意义,故错;
对于B,若α=450,则2α不是一象限,也不是二象限角,故错;
对于C,当$\overrightarrow{b}=\overrightarrow{0}$时,不成立,故错;
对于D,若P⊆{1,2},集合P可以是{1},{2},{1,2},∅,故正确.
故选:D

点评 本题考查了命题真假的判定,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=1+2sinxcosx+2cos2x.
(1)求f(x)递增区间;      
(2)求f(x)的对称轴方程;
(3)求f(x)的最大值并写出取最大值时自变量x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)=\frac{{\sqrt{9-{x^2}}}}{{|{6-x}|-6}}$,则函数的奇偶性为(  )
A.既是奇函数也是偶函数B.既不是奇函数也不是偶函数
C.是奇函数不是偶函数D.是偶函数不是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.经过点M(2$\sqrt{6}$,-2$\sqrt{6}$)且与双曲线$\frac{y^2}{3}$-$\frac{x^2}{4}$=1有共同渐近线的双曲线方程为(  )
A.$\frac{{y}^{2}}{6}$-$\frac{{x}^{2}}{8}$=1B.$\frac{{y}^{2}}{8}$-$\frac{{y}^{2}}{6}$=1C.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{6}$=1D.$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{8}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且$∠{F_1}P{F_2}=\frac{π}{2}$,椭圆和双曲线的离心率分别为e1、e2,则$\frac{1}{{{e_1}^2}}+\frac{1}{{{e_2}^2}}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义符号函数为sgn(x)=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,则下列命题:
①|x|=x•sgn(x);
②关于x的方程lnx•sgn(lnx)=sinx•sgn(sinx)有5个实数根;
③若lna•sgn(lna)=lnb•sgn(lnb)(a>b),则a+b的取值范围是(2,+∞);
④设f(x)=(x2-1)•sgn(x2-1),若函数g(x)=f2(x)+af(x)+1有6个零点,则a<-2.
正确的有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.解关于x的不等式:x2-(a2+a)x+a3≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直线l的参数方程为$\left\{\begin{array}{l}{x=a-2ty}\\{y=-4t}\end{array}\right.$(t为参数),圆C的参数方程为$\left\{\begin{array}{l}{x=4cosθ}\\{y=4sinθ}\end{array}\right.$(θ为参数).
(1)求直线l和圆C的普通方程;
(2)若直线l与圆C有公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=ex-e-x+4sin3x+1,x∈(-1,1),若f(1-a)+f(1-a2)>2成立,则实数a的取值范围是(  )
A.(-2,1)B.(0,1)C.$({1,\sqrt{2}})$D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

同步练习册答案