精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=ex-e-x+4sin3x+1,x∈(-1,1),若f(1-a)+f(1-a2)>2成立,则实数a的取值范围是(  )
A.(-2,1)B.(0,1)C.$({1,\sqrt{2}})$D.(-∞,-2)∪(1,+∞)

分析 令g(x)=f(x)-1,则可得g(x)为奇函数,且g(x)在(-1,1)上为增函数,进而可得答案.

解答 解:令g(x)=f(x)-1=ex-e-x+4sin3x,
则g(-x)=-g(x),即g(x)为奇函数,
若f(1-a)+f(1-a2)>2成立,
即g(1-a)+g(1-a2)>0成立,
即g(1-a)>-g(1-a2)=g(a2-1),
∵g′(x)=ex+e-x+12sin2xcosx≥0在x∈(-1,1)时恒成立,
故g(x)在(-1,1)上为增函数,
故-1<a2-1<1-a<1,
解得:a∈(0,1),
故选:B.

点评 本题考查的知识点是利用导数研究函数的单调性,函数的奇偶性,是函数图象和性质的综合应用,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.下列说法正确的是(  )
A.若f(x)是奇函数,则f(0)=0
B.若α是锐角,则2α是一象限或二象限角
C.若$\overrightarrow a∥\overrightarrow b,\overrightarrow b∥\overrightarrow c$,则$\overrightarrow a∥\overrightarrow c$
D.集合A={P|P⊆{1,2}}有4个元素

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x(lnx-1)
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数g(x)=f(x)-$\frac{a}{2}$x2有两个极值点x1,x2,试比较$\frac{1}{ln{x}_{1}}$+$\frac{1}{ln{x}_{2}}$与2ae的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l:(2m+1)x+(m+1)y-7m-4=0,圆C:(x-1)2+(y-1)2=25.
(1)求证:直线l过定点;
(2)当m为何值时,直线l被圆C截得的弦最短.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.$k=±\frac{{\sqrt{5}}}{2}$是直线y=kx-1与曲线x2-y2=4仅有一个公共点的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设l,m,n表示三条不同的直线,α,β,γ表示三个不同的平面,给出下列四个命题:
①若l⊥α,m⊥l,m⊥β,则α⊥β;
②若m?β,n是l在β内的射影,m⊥n,则m⊥l;
③若α⊥β,α⊥γ,则α∥β
其中真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知实数x,y满足$\left\{\begin{array}{l}x+y≤2\\ x≥\frac{1}{2}\\ y≥x\end{array}\right.$,且数列6x,z,2y为等差数列,则实数z的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,内角A,B,C所对的边分别是a,b,c,“a>b”是“sinA>sinB”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.向量$\overrightarrow{a}$=(2,4,x),$\overrightarrow{b}$=(2,y,2),若|$\overrightarrow{a}$|=6,且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则x+y的值为(  )
A.-3B.1C.-3或1D.3或1

查看答案和解析>>

同步练习册答案