精英家教网 > 高中数学 > 题目详情
14.已知实数x,y满足$\left\{\begin{array}{l}x+y≤2\\ x≥\frac{1}{2}\\ y≥x\end{array}\right.$,且数列6x,z,2y为等差数列,则实数z的最大值是4.

分析 画出满足条件的平面区域,求出角点的坐标,根据z=3x+y,得:y=-3x+z,显然直线过A(1,1)时,z最大,求出即可.

解答 解:画出满足条件$\left\{\begin{array}{l}x+y≤2\\ x≥\frac{1}{2}\\ y≥x\end{array}\right.$的平面区域,如图示:
由$\left\{\begin{array}{l}{y=x}\\{x+y=2}\end{array}\right.$,解得A(1,1),
∵数列6x,z,2y为等差数列,
∴z=3x+y,得:y=-3x+z,
显然直线过A(1,1)时,z最大,z的最大值是:4,
故答案为:4.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.解关于x的不等式:x2-(a2+a)x+a3≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知i是虚数单位,复数z=m-1+(m+1)i,(其中m∈R)是纯虚数,则m=(  )
A.-1B.1C.±1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=ex-e-x+4sin3x+1,x∈(-1,1),若f(1-a)+f(1-a2)>2成立,则实数a的取值范围是(  )
A.(-2,1)B.(0,1)C.$({1,\sqrt{2}})$D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,一只蚂蚁从点A出发沿着水平面的线条爬行到点C,再由点C沿着置于水平面的长方体的棱爬行至顶点B,则它可以爬行的不同的最短路径有(  )条.
A.40B.60C.80D.120

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,EA⊥平面ABC,DB⊥平面ABC,△ABC是等边三角形,AC=2AE,M是AB的中点.
(Ⅰ)求证:CM⊥EM;
(Ⅱ)若直线DM与平面ABC所成角的正切值为2,求二面角B-CD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知x,y满足$\left\{\begin{array}{l}y≤x\\ x+y+2≥0\\ x≤1\end{array}\right.$,且z=y-2x的最大值是(  )
A.1B.-1C.-2D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,A,B是以点C为圆心,R为半径的圆上的任意两个点,且|AB|=4,则$\overrightarrow{AB}$•$\overrightarrow{AC}$=(  )
A.16B.8C.4D.与R有关的值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且$∠{F_1}P{F_2}=\frac{π}{3}$,则椭圆和双曲线的离心率乘积的最小值为(  )
A.1B.$\frac{{\sqrt{3}}}{2}$C.$\sqrt{2}$D.$\frac{{\sqrt{6}}}{4}$

查看答案和解析>>

同步练习册答案