精英家教网 > 高中数学 > 题目详情
19.如图,EA⊥平面ABC,DB⊥平面ABC,△ABC是等边三角形,AC=2AE,M是AB的中点.
(Ⅰ)求证:CM⊥EM;
(Ⅱ)若直线DM与平面ABC所成角的正切值为2,求二面角B-CD-E的余弦值.

分析 (Ⅰ)证明CM⊥AB,CM⊥EA.推出CM⊥平面EAM.然后证明CM⊥EM.
(Ⅱ)以点M为坐标原点,MC所在直线为x轴,MB所在直线为y轴,过M且与直线BD平行的直线为z轴,建立空间直角坐标系M-xyz.说明∠DMB为直线DM与平面ABC所成角.设AC=2,求出相关点的坐标,求出平面BCD与平面CDE的法向量,利用空间向量的数量积求解即可.

解答 解:(Ⅰ)因为△ABC是等边三角形,M是AB的中点,

所以CM⊥AB.…(1分)
因为EA⊥平面ABC,CM?平面ABC,
所以CM⊥EA.…(2分)
因为AM∩EA=A,
所以CM⊥平面EAM.…(3分)
因为EM?平面EAM,
所以CM⊥EM.…(4分)
(Ⅱ)以点M为坐标原点,MC所在直线为x轴,
MB所在直线为y轴,过M且与直线BD平行的直线为z轴,
建立空间直角坐标系M-xyz.
因为DB⊥平面ABC,
所以∠DMB为直线DM与平面ABC所成角.…(5分)
由题意得tan∠DMB=$\frac{BD}{MB}$=2,即BD=2MB,…(6分)
从而BD=AC.
不妨设AC=2,又AC-2AE,则CM=$\sqrt{3}$,AE=1.…(7分)
故B(0,1,0),C($\sqrt{3}$,0,0),D(0,1,2),E(0,-1,1).…(8分)
于是$\overrightarrow{BC}$=($\sqrt{3}$,-1,0),$\overrightarrow{BD}$=(0,0,2),$\overrightarrow{CE}$=(-$\sqrt{3}$,-1,1),$\overrightarrow{CD}$=(-$\sqrt{3}$,1,2),
设平面BCD与平面CDE的法向量分别为$\overrightarrow{m}=({x}_{1}{y}_{1},{z}_{1})$,$\overrightarrow{n}=({x}_{2},{y}_{2},{z}_{2})$,
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BC}=0}\\{\overrightarrow{m}•\overrightarrow{BD}=0}\end{array}\right.$可得$\left\{\begin{array}{l}{\sqrt{3}{x}_{1}-{y}_{1}=0}\\{2{z}_{1}=0}\end{array}\right.$    令x1=1,得y1=$\sqrt{3}$,
所以$\overrightarrow{m}$=(1,$\sqrt{3}$,0).…(9分)
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CE}=0}\\{\overrightarrow{n}•\overrightarrow{CD}=0}\end{array}\right.$   得$\left\{\begin{array}{l}{-\sqrt{3}{x}_{2}-{y}_{2}+{z}_{2}=0}\\{-\sqrt{3}{x}_{2}+{y}_{2}+2{z}_{2}=0}\end{array}\right.$,令x2=1,得y2=$-\frac{\sqrt{3}}{3}$,z2=$\frac{2\sqrt{3}}{3}$.
所以$\overrightarrow{n}$=(1,-$\frac{\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$).…(10分)
所以cos$<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=0.…(11分)
所以二面角B-CD-E的余弦值为0.…(12分)

点评 本题综合考查了直线与平面垂直的判定定理及其性质定理,面面垂直的性质定理,二面角的求法、考查了推理能力、辅助线的作法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.(x+2y-$\frac{1}{z}$)6展开式中$\frac{x{y}^{2}}{{z}^{3}}$的系数为-240.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l:(2m+1)x+(m+1)y-7m-4=0,圆C:(x-1)2+(y-1)2=25.
(1)求证:直线l过定点;
(2)当m为何值时,直线l被圆C截得的弦最短.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设l,m,n表示三条不同的直线,α,β,γ表示三个不同的平面,给出下列四个命题:
①若l⊥α,m⊥l,m⊥β,则α⊥β;
②若m?β,n是l在β内的射影,m⊥n,则m⊥l;
③若α⊥β,α⊥γ,则α∥β
其中真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知实数x,y满足$\left\{\begin{array}{l}x+y≤2\\ x≥\frac{1}{2}\\ y≥x\end{array}\right.$,且数列6x,z,2y为等差数列,则实数z的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=loga(1+x),g(x)=loga(1-x),其中a>0且a≠1,设h(x)=f(x)-g(x)
(1)求函数h(x)的定义域,判断h(x)的奇偶性并说明理由
(2)解不等式h(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,内角A,B,C所对的边分别是a,b,c,“a>b”是“sinA>sinB”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.log52•log425等于(  )
A.-1B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆O:x2+y2=r2的任意一条切线l与椭圆$M:\frac{x^2}{6}+\frac{y^2}{3}=1$都有两个不同的交点A,B.
(1)求圆O半径r的取值范围;
(2)是否存在圆O,满足OA⊥OB恒成立?若存在,求出圆O的方程及$|{\overrightarrow{OA}}|•|{\overrightarrow{OB}}|$的最大值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案