·ÖÎö £¨1£©ÒªÊ¹Ô²O£ºx2+y2=r2µÄÈÎÒâÒ»ÌõÇÐÏßlÓëÍÖÔ²$M£º\frac{x^2}{6}+\frac{y^2}{3}=1$¶¼ÓÐÁ½¸ö²»Í¬µÄ½»µã£¬ÔòÔ²±ØÔÚÍÖÔ²µÄÄÚ²¿¼´¿É£®
£¨2£©Éè³öÇÐÏߵķ½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÁ½Ö±Ïß´¹Ö±µÄÌõ¼þ£¬»¯¼òÕûÀí£¬¼´¿ÉµÃµ½°ë¾¶rµÄÖµ£®ÓÉOA¡ÍOB£¬¼´$|{\overrightarrow{OA}}|•|{\overrightarrow{OB}}|$=r•AB£¬¿ÉµÃ$|{\overrightarrow{OA}}|•|{\overrightarrow{OB}}|$µÄ×î´óÖµ£®
½â´ð ½â£º£¨1£©ÒªÊ¹Ô²O£ºx2+y2=r2µÄÈÎÒâÒ»ÌõÇÐÏßlÓëÍÖÔ²$M£º\frac{x^2}{6}+\frac{y^2}{3}=1$¶¼ÓÐÁ½¸ö²»Í¬µÄ½»µã£¬
ÔòÔ²±ØÔÚÍÖÔ²µÄÄÚ²¿£¬¡à0£¼r£¼$\sqrt{3}$£®
£¨2£©ÉèÔ²µÄÇÐÏß·½³Ìy=kx+m£¬ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{6}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬µÃ£¨1+2k2£©x2+4kmx+2m2-6=0£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬x1+x2=$\frac{-4km}{1+2{k}^{2}}$£¬x1x2=$\frac{2{m}^{2}-6}{1+2{k}^{2}}$£®
y1y2=£¨kx1+m£©£¨kx2+m£©=$\frac{{m}^{2}-6{k}^{2}}{1+2{k}^{2}}$£®
¡ßOA¡ÍOB£¬¡àx1x2+y1y2=0⇒m2=2k2+2£¬¡¢Ù
¡ßy=kx+mÓëÔ²O£ºx2+y2=r2ÏàÇУ¬¡àr2=$\frac{{m}^{2}}{1+{k}^{2}}$¡¢Ú
ÓÉ¢Ù¢ÚµÃr2=2£¬´ËʱԲµÄ·½³ÌΪ£ºx2+y2=2£¬
µ±ÇÐÏßµÄбÂʲ»´æÔÚʱ£¬ÇÐÏß·½³ÌΪx=¡À$\sqrt{2}$
A£¨$\sqrt{2}£¬\sqrt{2}$£©£¬B£¨$\sqrt{2}£¬-\sqrt{2}$£©»òA£¨-$\sqrt{2£¬}\sqrt{2}$£©£¬B£¨-$\sqrt{2£¬}-\sqrt{2}$£©Âú×ãÌõ¼þ
¡àÔ²µÄ·½³ÌΪ£ºx2+y2=2
¡ß|AB|=$\sqrt{1+{k}^{2}}\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$2\sqrt{2}\sqrt{1+\frac{1}{4{k}^{2}+\frac{1}{{k}^{2}}+4}}¡Ü3$£¬
µ±Ö±ÏßABµÄбÂʲ»´æÔÚ»òΪ0ʱ£¬|AB|=2$\sqrt{2}$£®
¡à|AB|¡Ü3
¡ßOA¡ÍOB£¬¡à$|{\overrightarrow{OA}}|•|{\overrightarrow{OB}}|$=r•AB£¬
$|{\overrightarrow{OA}}|•|{\overrightarrow{OB}}|$µÄ×î´óÖµ3$\sqrt{2}$£®
µãÆÀ ¿¼²éÖ±ÏߺÍÔ²ÏàÇУ¬ÒÔ¼°Ö±ÏߺÍÍÖÔ²ÁªÁ¢ÔËÓÃΤ´ï¶¨ÀíºÍÁ½Ö±Ïß´¹Ö±µÄÌõ¼þ£ºÊýÁ¿»ýΪ0£¬¿¼²é»¯½âÔÚºÏÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -1 | B£® | -2 | C£® | -3 | D£® | 1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 3¦Ð | B£® | $\frac{3¦Ð}{2}$ | C£® | 6¦Ð | D£® | $\frac{3¦Ð}{4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | $\frac{{\sqrt{3}}}{2}$ | C£® | $\sqrt{2}$ | D£® | $\frac{{\sqrt{6}}}{4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -1 | B£® | 0 | C£® | 1 | D£® | e |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨0£¬1] | B£® | £¨0£¬2£© | C£® | $£¨{0£¬\frac{3}{2}}]$ | D£® | £¨0£¬2] |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com