9£®ÒÑÖªÔ²O£ºx2+y2=r2µÄÈÎÒâÒ»ÌõÇÐÏßlÓëÍÖÔ²$M£º\frac{x^2}{6}+\frac{y^2}{3}=1$¶¼ÓÐÁ½¸ö²»Í¬µÄ½»µãA£¬B£®
£¨1£©ÇóÔ²O°ë¾¶rµÄȡֵ·¶Î§£»
£¨2£©ÊÇ·ñ´æÔÚÔ²O£¬Âú×ãOA¡ÍOBºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öÔ²OµÄ·½³Ì¼°$|{\overrightarrow{OA}}|•|{\overrightarrow{OB}}|$µÄ×î´óÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÒªÊ¹Ô²O£ºx2+y2=r2µÄÈÎÒâÒ»ÌõÇÐÏßlÓëÍÖÔ²$M£º\frac{x^2}{6}+\frac{y^2}{3}=1$¶¼ÓÐÁ½¸ö²»Í¬µÄ½»µã£¬ÔòÔ²±ØÔÚÍÖÔ²µÄÄÚ²¿¼´¿É£®
£¨2£©Éè³öÇÐÏߵķ½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÁ½Ö±Ïß´¹Ö±µÄÌõ¼þ£¬»¯¼òÕûÀí£¬¼´¿ÉµÃµ½°ë¾¶rµÄÖµ£®ÓÉOA¡ÍOB£¬¼´$|{\overrightarrow{OA}}|•|{\overrightarrow{OB}}|$=r•AB£¬¿ÉµÃ$|{\overrightarrow{OA}}|•|{\overrightarrow{OB}}|$µÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©ÒªÊ¹Ô²O£ºx2+y2=r2µÄÈÎÒâÒ»ÌõÇÐÏßlÓëÍÖÔ²$M£º\frac{x^2}{6}+\frac{y^2}{3}=1$¶¼ÓÐÁ½¸ö²»Í¬µÄ½»µã£¬
ÔòÔ²±ØÔÚÍÖÔ²µÄÄÚ²¿£¬¡à0£¼r£¼$\sqrt{3}$£®
£¨2£©ÉèÔ²µÄÇÐÏß·½³Ìy=kx+m£¬ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{6}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬µÃ£¨1+2k2£©x2+4kmx+2m2-6=0£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬x1+x2=$\frac{-4km}{1+2{k}^{2}}$£¬x1x2=$\frac{2{m}^{2}-6}{1+2{k}^{2}}$£®
y1y2=£¨kx1+m£©£¨kx2+m£©=$\frac{{m}^{2}-6{k}^{2}}{1+2{k}^{2}}$£®
¡ßOA¡ÍOB£¬¡àx1x2+y1y2=0⇒m2=2k2+2£¬¡­¢Ù
¡ßy=kx+mÓëÔ²O£ºx2+y2=r2ÏàÇУ¬¡àr2=$\frac{{m}^{2}}{1+{k}^{2}}$¡­¢Ú
ÓÉ¢Ù¢ÚµÃr2=2£¬´ËʱԲµÄ·½³ÌΪ£ºx2+y2=2£¬
µ±ÇÐÏßµÄбÂʲ»´æÔÚʱ£¬ÇÐÏß·½³ÌΪx=¡À$\sqrt{2}$
A£¨$\sqrt{2}£¬\sqrt{2}$£©£¬B£¨$\sqrt{2}£¬-\sqrt{2}$£©»òA£¨-$\sqrt{2£¬}\sqrt{2}$£©£¬B£¨-$\sqrt{2£¬}-\sqrt{2}$£©Âú×ãÌõ¼þ
¡àÔ²µÄ·½³ÌΪ£ºx2+y2=2
¡ß|AB|=$\sqrt{1+{k}^{2}}\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$2\sqrt{2}\sqrt{1+\frac{1}{4{k}^{2}+\frac{1}{{k}^{2}}+4}}¡Ü3$£¬
µ±Ö±ÏßABµÄбÂʲ»´æÔÚ»òΪ0ʱ£¬|AB|=2$\sqrt{2}$£®
¡à|AB|¡Ü3
¡ßOA¡ÍOB£¬¡à$|{\overrightarrow{OA}}|•|{\overrightarrow{OB}}|$=r•AB£¬
$|{\overrightarrow{OA}}|•|{\overrightarrow{OB}}|$µÄ×î´óÖµ3$\sqrt{2}$£®

µãÆÀ ¿¼²éÖ±ÏߺÍÔ²ÏàÇУ¬ÒÔ¼°Ö±ÏߺÍÍÖÔ²ÁªÁ¢ÔËÓÃΤ´ï¶¨ÀíºÍÁ½Ö±Ïß´¹Ö±µÄÌõ¼þ£ºÊýÁ¿»ýΪ0£¬¿¼²é»¯½âÔÚºÏÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬EA¡ÍÆ½ÃæABC£¬DB¡ÍÆ½ÃæABC£¬¡÷ABCÊǵȱßÈý½ÇÐΣ¬AC=2AE£¬MÊÇABµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºCM¡ÍEM£»
£¨¢ò£©ÈôÖ±ÏßDMÓëÆ½ÃæABCËù³É½ÇµÄÕýÇÐֵΪ2£¬Çó¶þÃæ½ÇB-CD-EµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑ֪˫ÇúÏß$\frac{x^2}{m}+{y^2}=1$µÄÀëÐÄÂÊÊÇ$\sqrt{2}$£¬ÔòʵÊýmµÄֵΪ£¨¡¡¡¡£©
A£®-1B£®-2C£®-3D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªÒ»ÉÈÐεÄÔ²ÐĽÇÊÇ60¡ã£¬»¡³¤ÊǦУ¬ÔòÕâ¸öÉÈÐεÄÃæ»ýÊÇ£¨¡¡¡¡£©
A£®3¦ÐB£®$\frac{3¦Ð}{2}$C£®6¦ÐD£®$\frac{3¦Ð}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªF1£¬F2ÊÇÍÖÔ²ºÍË«ÇúÏߵĹ«¹²½¹µã£¬PÊÇËüÃǵÄÒ»¸ö¹«¹²µã£¬ÇÒ$¡Ï{F_1}P{F_2}=\frac{¦Ð}{3}$£¬ÔòÍÖÔ²ºÍË«ÇúÏßµÄÀëÐÄÂʳ˻ýµÄ×îСֵΪ£¨¡¡¡¡£©
A£®1B£®$\frac{{\sqrt{3}}}{2}$C£®$\sqrt{2}$D£®$\frac{{\sqrt{6}}}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®º¯Êýf£¨x£©=aex-sinxÔÚx=0´¦Óм«Öµ£¬ÔòaµÄֵΪ£¨¡¡¡¡£©
A£®-1B£®0C£®1D£®e

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÓëÃüÌâ¡°Èôx¡ÊA£¬Ôòx¡ÊB¡±µÈ¼ÛµÄÃüÌâΪÈôx∉A£¬Ôòx∉B£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êý$f£¨x£©=\sqrt{3}sinxcosx+2{cos^2}x-{sin^2}x$
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷ÔöÇø¼ä£»
£¨2£©Èô$f£¨¦Á£©=2£¬¦Á¡Ê[{\frac{¦Ð}{12}£¬\frac{5¦Ð}{12}}]$£¬Çócos2¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªp£ºx2-4x-5£¾0£¬q£ºx2-2x+1-¦Ë2£¾0£¬ÈôpÊÇqµÄ³ä·Ö²»±ØÒªÌõ¼þ£¬ÔòÕýʵÊý¦ËµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨0£¬1]B£®£¨0£¬2£©C£®$£¨{0£¬\frac{3}{2}}]$D£®£¨0£¬2]

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸